Assessing particle orientation in small angle neutron scattering

Jack Rooks (jackrook@buffalo.edu), Peter Gilbert

Motivation

- Material properties depend on orientation/alignment
filler - dispersed phase

Motivation

- Material properties depend on orientation/alignment

Motivation

- Material properties depend on orientation/alignment

Initial: amorphous chains

Final: chains are straight

Experimental Setup (Rheometer)

Experimental Setup (Rheometer)

Experimental Setup (Rheometer)

Experimental Setup (Rheometer)

Neutron Scattering

$\overrightarrow{k_{i}}$ - Neutron beam

Neutron Scattering

Neutron Scattering

Neutron Scattering

$\vec{k}_{\mathrm{i}}-$ Neutron

beam
$\vec{k}_{\mathrm{s}}-$ Scattered
neutron

Neutron Scattering

$\vec{k}_{\mathrm{i}}-$ Neutron
\quad beam
$\vec{k}_{\mathrm{s}}-$ Scattered
neutron

Experimental Setup (Rheometer)

Obtaining Data

Experimental

- Cylindrical micelles
- 0.03 M Cetrimonium bromide (CTAB)
- 0.24 M Sodium salicylate
- Rheo-SANS
$-10 \mathrm{~s}^{-1}$ shear rate

Obtaining Data

Theoretical

- Cylindrical rods
- Mean radius of 20 Å
-5% polydispersity in radius
- Length of $1800 \AA$

Experimental

- Cylindrical micelles
- 0.03 M Cetrimonium bromide (CTAB)
- 0.24 M Sodium salicylate
- Rheo-SANS
- $10 \mathrm{~s}^{-1}$ shear rate

Characterizing Alignment

Characterizing Alignment

Characterizing Alignment

$$
A_{f}=1 \longleftrightarrow A_{f}=? \longrightarrow A_{f}=0
$$

A Alignment Factor Calculation

Characterizing Alignment

Characterizing Alignment

Characterizing Alignment

Characterizing Alignment

Differences in Calculation Methods

Cosine expansion

Differences in Calculation Methods

Cosine expansion $2^{\text {nd }}$ order Legendre

Alignment Factor From Series Expansion

Alignment Factor From Series Expansion

Alignment Factor From Series Expansion

Alignment Factor From Series Expansion

Calculating Alignment Factor - Integrated Axes

Calculating Alignment Factor - Integrated Axes

Reminder: Scattering Pattern Shapes

Theoretical

Comparison Theoretical

Experimental

Location matters

Methods not equivalent

Summary

Location matters

Methods not equivalent

Future Plans

- Determine particle orientation
between radial and tangential configurations
- Which alignment factor describes particle orientation best?

Supplementary slides

Cosine expansion and Legendre polynomial

Cosine expansion and Legendre polynomial

Calculating Alignment Factor - Series Expansion

Calculating Alignment Factor - Series Expansion

$$
\begin{aligned}
& \text { Cosine expansion } \\
& A_{f}(q)=\frac{\int_{0}^{2 \pi}\left(q, \phi_{s} \cos 2\left(\phi_{s}-\phi_{s_{s}}\right) d \phi_{s}\right.}{\int_{0}^{2 \pi} I\left(q, \phi_{s}\right) d \phi_{\mathrm{s}}}
\end{aligned}
$$

Calculating Alignment Factor - Series Expansion

$$
\begin{aligned}
& \text { Cosine expansion } \\
& A_{f}(q)=\frac{\int_{0}^{2 \pi} \pi\left(q, \phi_{s}\right) \cos 2\left(\phi_{\mathrm{s}}-\phi_{\mathrm{s})}\right) d \phi_{\mathrm{s}}}{\int_{0}^{2 \pi} \pi\left(q, \phi_{s}\right) d \phi_{\mathrm{s}}} \\
& 2^{\text {nd }} \text { order Legendre }
\end{aligned}
$$

Calculating Alignment Factor - Integrated Axes

Calculating Alignment Factor - Integrated Axes

