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Goal
To track first responders under various adverse 
conditions during emergency response 
scenarios



Visibility Constraints
Search and rescue procedures highly depend 
on visibility levels. 
Smoke will limit the speed with which 
firefighters move.



Challenges under good visibility 

No GPS, Wi-Fi, or electricity is available.

Current Challenges:
• Limited bandwidth
• Error due to frame-by-frame motion estimation
• Training data not always available
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Visual Odometry with 
Geometry Aware-Curriculum Learning (GA-CL)
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“Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning” -ICRA 2019
Muhamad Risqi U. Saputra, Pedro P. B. de Gusmao, Sen Wang, Andrew Markham, and Niki Trigoni 
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“Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning” -ICRA 2019
Muhamad Risqi U. Saputra, Pedro P. B. de Gusmao, Sen Wang, Andrew Markham, and Niki Trigoni 

Visual Odometry with 
Geometry Aware-Curriculum Learning (GA-CL)



• GA-CL improves translation and rotation by 21% and 16% respectively 
compared to training with standard relative loss

• State-of-the art visual odometry results
• Where adequate illumination is available, accurate odometry is possible

Visual Odometry with 
Geometry Aware-Curriculum Learning (GA-CL)



Efficient Deep Neural Odometry
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• This component achieves the same (or even better) tracking 
performance with smaller computation and memory costs

• This will allow complex deep networks to be deployed to operate 
in real-time on mobile devices

Efficient Deep Neural Odometry



GANVO: Unsupervised Deep Monocular Visual 
Odometry and Depth Estimation

• Supervised deep learning methods need plenty of labelled data
• GANVO provides a visual odometry solution for unknown environments

• The idea is to create a supervisory signal by exploiting the geometry

“GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks” – ICRA 2019
Yasin Almalioglu, Muhamad Risqi U. Saputra, Pedro P. B. de Gusmao, Andrew Markham, and Niki Trigoni.



GANVO: Visual Odometry and Depth Estimation
Results



• State of the art tracking results without requiring any training (ground-truth) 
data

• Allows the tracking technique to adapt to new and unseen environments 
rapidly

GANVO: Visual Odometry and Depth Estimation



Challenges under constrained visibility 

Still no GPS, Wi-Fi, or even electricity is available.

Extra Challenges:
• Vision is compromised. Alternative equipment is required.
• Heat signature might not be enough to use thermal images.   



Lidar



DeepPCO: End-to-End Point Cloud Odometry 
through Deep Parallel Neural Network

“DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel Neural Network” – IROS 2019
Wei Wang, Muhamad Risqi U. Saputra, Peijun Zhao, Pedro Gusmao, Bo Yang, Changhao Chen, Andrew Markham, and Niki Trigoni

Lidar is a reliable sensor in firefighters' scenario:
• It can perceive environment even in dark or 

dynamic indoor environment.
• It can create high-quality point cloud map which 

can assist firefighters.
• It can provide the accurate odometry, which can 

localize firefighters in real time.



DeepPCO: Architecture



• Position and Orientation 
estimations are more accurate 
if estimated separately.

• Also gives you a point cloud 
map of the environment if 
needed.

DeepPCO: End-to-End Point Cloud Odometry 
through Deep Parallel Neural Network



Challenges under NO visibility 

Still no GPS, Wi-Fi, or even electricity is available.

Extra Challenges:
• Vision is no longer reliable.
• Lidar no longer works.

m
m IMU



Data Collection - Training Facility
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Data Collection - Training Facility



Issues:
• Extremely low visibility.
• Soot could lead to inability use 

laser/depth.

Data Collection - Training Facility



Issues:
• Temperature is controlled by watering the 

ceiling, which required sensor protection.
• Due to unpredicted motions, some sensors 

were disconnected.
• Flashlights caused white balancing to 

overcompensate



Foot-mounted inertial navigation

IMU



Odometry from foot-mounted 
inertial sensors

• Not dependent on environmental 
conditions  

• Does not require external 
infrastructure

• Low-cost technology



Zero-velocity-aided 
inertial navigation
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The effect of zero-velocity updates

With zero-velocity updates Without zero-velocity updates



Position error growth
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With zero-velocity 
updates: Linear position 

error growth.

Navigation Navigation time

Stand-alone inertial navigation A few seconds

Zero-velocity-aided inertial navigation Several minutes

Without zero-velocity 
updates: Cubic position 

error growth.



Zero-velocity Detection
Compute likelihood ratio: 𝐿 𝐳/ = ,(𝒛3|56)

,(𝒛3|58)

The foot is stationaryThe foot is moving

How set 𝛾? The optimal fixed 𝛾 depends on the velocity.

𝐿 𝐳/ < 𝛾 𝛾 𝐿 𝐳/ ≥ 𝛾



Challenges with zero-velocity-aided inertial 
navigation

• Position drift
• The optimal implementation is 

dependent on factors such as
• gait speed
• the walking surface



Adaptive Thresholding



Performance Evaluation
After walking along a closed-loop trajectory with 

an approximate length of 84 meter:

J. Wahlström, I. Skog, F. Gustafsson, A. Markham, and N. Trigoni, "Zero-Velocity Detection - A Bayesian 
Approach to Adaptive Thresholding," IEEE Sensors Letters, vol. 3, no. 6, Jun. 2019. 



FootSLAM
FootSLAM Inertial odometry

• Divide the navigation area into a grid of hexagons

• Learn the probability of moving from one hexagon to an adjacent one.



Calibration using FootSLAM



Foot-mounted inertial navigation
• Foot-mounted inertial navigation is a reliable navigation 

technology with no dependence on visibility, line-of-sight, 
or pre-deployed infrastructure.

• By adapting the zero-velocity-detection threshold it is 
possible to reach excellent performance despite variations 
in gait speed and environment conditions.



Magneto Inductive



Magneto Inductive

Transmitter Receiver

Advantages:
• Low frequency modulated magnetic fields provide 

accurate 3-D positioning
• MI does not suffer from multipath
• Penetrates the majority of materials (concrete, soil, 

people, water, vegetation) without loss
• Single transmitter provides 3-D positioning

Disadvantages:
The signal amplitude decays quickly with distance, so 
that the signal received rapidly fades into noise with 
increasing distance



Rx at 3 m Rx at 10 m

Rx at 20 m Rx at 30 m
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Magneto Inductive

• Rapid amplitude decay also means higher accuracy within a specific range. 
• Magneto Inductive can be coupled with Inertial Sensors to allow for graph 

optimization.  



Millimeter wave
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Millimeter Wave Radar

• Independent of illumination condition 
and infrastructure (e.g. GPS or Wi-Fi)

• Functional under poor visual 
conditions due to
• thick smoke
• heavy fog
• high temperatures and
• falling debris

m
m



Advantages:
• Provides accurate range-measurement
• Gathers readings at close range, and
• Operates at low peak power

Challenges:
• Sidelobes—radiation sent in unintended directions and
• Multipath reflections that occur when a wave encounters additional 

reflection points before returning to the receiver antenna

Millimeter Wave Radar
m

m



Millimeter Wave Radar-Our Approach

• Idea: To use MM-Wave short range radars as the main means for pose 
perception to improve the precision of pose estimates and map 
reconstruction

• Radar odometry based on the normal distributions transform (NDT) scan 
matching approach aided by IMU

m
m



• Estimated trajectory compared with ground-truth trajectory

m
m

Millimeter Wave Radar Odometry



• Sparse measurements from radar scan in smoke-filled environment
Thermal data Radar data

Millimeter Wave Radar
m

m



• Millimeter wave radar is a promising sensing technology capable of penetrating 
smoke.

• When compared to Lidar, Millimeter Wave radar produces fewer points, which 
in turn leads to faster processing.

m
m

Millimeter Wave Radar



Thermal



Thermal
Advantages:
• Functional under heavy smoke, etc.
• Enough information to identify object’ s 

shape
• Ideally compatible with state-of-the-art 

algorithms for vision

Challenges:
• Lack of visual features 
• Dynamic range depends on temperature
• Require Non-uniform Correction (NUC)



Deep Thermal-Inertial Odometry

• Train end-to-end with raw thermal radiometric data + IMU
• Augmentation

• Random trajectory splitting
• Mean shifting on radiometric data



Test in Oxford College Building

Radiometric data normalized to grayscale

Deep Thermal-Inertial Odometry



Test in firefighter training facility with smoke-
filled environment

Radiometric data normalized to grayscale

Deep Thermal-Inertial Odometry



• Thermal imaging is a common tool in firefighting
• This is the first work to consider using it to accurately track location

Deep Thermal-Inertial Odometry



Foot-mounted inertial navigation



Summary
• Multi-sensor approach derisks the failure of a single sensor e.g. due to 

thick smoke or occlusions
• Individual components for odometry are progressing well
• Iterative approach of testing in the lab and in the wild is yielding benefits 

in balancing complexity and reality
• Next steps are selective sensor fusion and system integration
• One step closer to the goal of robust first responder tracking



Thank you

Contacts:
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