

Pervasive, Accurate and Reliable Location Based Services for **Emergency Responders**

DISCLAIMER

This presentation was produced by guest speaker(s) and presented at the National Institute of Standards and Technology's 2019 Public Safety Broadband Stakeholder Meeting. The contents of this presentation do not necessarily reflect the views or policies of the National Institute of Standards and Technology or the U.S. Government.

Posted with permission

Goal

To track first responders under *various* adverse conditions during emergency response scenarios

Visibility Constraints

Search and rescue procedures highly depend on visibility levels. Smoke will limit the speed with which firefighters move.

Challenges under good visibility

No GPS, Wi-Fi, or electricity is available.

Current Challenges:

- Limited bandwidth
- Error due to frame-by-frame motion estimation
- Training data not always available

Visual Odometry

Visual Odometry with Geometry Aware-Curriculum Learning (GA-CL)

"Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning" -ICRA 2019 Muhamad Risqi U. Saputra, Pedro P. B. de Gusmao, Sen Wang, Andrew Markham, and Niki Trigoni

Visual Odometry with Geometry Aware-Curriculum Learning (GA-CL)

"Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning" -ICRA 2019 Muhamad Risqi U. Saputra, Pedro P. B. de Gusmao, Sen Wang, Andrew Markham, and Niki Trigoni

Visual Odometry with

Geometry Aware-Curriculum Learning (GA-CL)

"Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning" -ICRA 2019 Muhamad Risqi U. Saputra, Pedro P. B. de Gusmao, Sen Wang, Andrew Markham, and Niki Trigoni

Visual Odometry with Geometry Aware-Curriculum Learning (GA-CL)

- GA-CL improves translation and rotation by 21% and 16% respectively compared to training with standard relative loss
- State-of-the art visual odometry results
- Where adequate illumination is available, accurate odometry is possible

UNIVERSITY OF OXFORD

- This component achieves the same (or even better) tracking performance with smaller computation and memory costs
- This will allow complex deep networks to be deployed to operate in real-time on mobile devices

GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation

- Supervised deep learning methods need plenty of labelled data
- GANVO provides a visual odometry solution for unknown environments
 - The idea is to create a supervisory signal by exploiting the geometry

"GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks" – ICRA 2019 Yasin Almalioglu, Muhamad Risqi U. Saputra, Pedro P. B. de Gusmao, Andrew Markham, and Niki Trigoni.

GANVO: Visual Odometry and Depth Estimation Results

GANVO: Visual Odometry and Depth Estimation

- State of the art tracking results without requiring any training (ground-truth) data
- Allows the tracking technique to adapt to new and unseen environments rapidly

Challenges under constrained visibility

Still no GPS, Wi-Fi, or even electricity is available.

Extra Challenges:

- Vision is compromised. Alternative equipment is required.
- Heat signature might not be enough to use thermal images.

Lidar

DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel Neural Network

Lidar is a reliable sensor in firefighters' scenario:

- It can perceive environment even in dark or dynamic indoor environment.
- It can create high-quality point cloud map which can assist firefighters.
- It can provide the accurate odometry, which can localize firefighters in real time.

"DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel Neural Network" – IROS 2019 Wei Wang, Muhamad Risqi U. Saputra, Peijun Zhao, Pedro Gusmao, Bo Yang, Changhao Chen, Andrew Markham, and Niki Trigoni

DeepPCO: Architecture

FlowNet Orientation Sub-Network

DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel Neural Network

- Position and Orientation estimations are more accurate if estimated separately.
- Also gives you a point cloud map of the environment if needed.

Challenges under **NO** visibility

Still no GPS, Wi-Fi, or even electricity is available.

Extra Challenges:

- Vision is no longer reliable.
- Lidar no longer works. •

Data Collection - Training Facility

Data Collection - Training Facility

IMU

Millimeter wave

Data Collection - Training Facility

Data Collection - Training Facility

Issues:

- Extremely low visibility.
- Soot could lead to inability use laser/depth.

Issues:

- Temperature is controlled by watering the ceiling, which required sensor protection.
- Due to unpredicted motions, some sensors were disconnected.
- Flashlights caused white balancing to overcompensate

Foot-mounted inertial navigation

Odometry from foot-mounted inertial sensors

- Not dependent on environmental conditions
- Does not require external infrastructure
- Low-cost technology

Zero-velocity-aided inertial navigation

The effect of zero-velocity updates

Without zero-velocity updates

Position error growth

Without zero-velocity updates: **Cubic** position error growth.

With zero-velocity updates: Linear position error growth. Position error

time

Navigation	Navigation time
Stand-alone inertial navigation	A few seconds
Zero-velocity-aided inertial navigation	Several minutes

Compute likelihood ratio: $L(\mathbf{z}_n) = \frac{p(\mathbf{z}_n|H_1)}{p(\mathbf{z}_n|H_0)}$

How set γ ? The optimal fixed γ depends on the velocity.

Challenges with zero-velocity-aided inertial navigation

- Position drift
- The optimal implementation is dependent on factors such as
 - gait speed
 - the walking surface

Adaptive Thresholding

Performance Evaluation

After walking along a closed-loop trajectory with an approximate length of <u>84</u> meter:

J. Wahlström, I. Skog, F. Gustafsson, A. Markham, and N. Trigoni, "Zero-Velocity Detection - A Bayesian Approach to Adaptive Thresholding," IEEE Sensors Letters, vol. 3, no. 6, Jun. 2019.

FootSLAM

Inertial odometry FootSLAM position [m] position [m] -10 -10 -10 8 10 -10 8 10 position [m] position [m]

- Divide the navigation area into a grid of hexagons
- Learn the probability of moving from one hexagon to an adjacent one.

Calibration using FootSLAM

Foot-mounted inertial navigation

- Foot-mounted inertial navigation is a reliable navigation technology with no dependence on visibility, line-of-sight, or pre-deployed infrastructure.
- By adapting the zero-velocity-detection threshold it is possible to reach excellent performance despite variations in gait speed and environment conditions.

Magneto Inductive

Magneto Inductive

Advantages:

- Low frequency modulated magnetic fields provide accurate 3-D positioning
- MI does not suffer from multipath
- Penetrates the majority of materials (concrete, soil, people, water, vegetation) without loss
- Single transmitter provides 3-D positioning

Disadvantages:

The signal amplitude decays quickly with distance, so that the signal received rapidly fades into noise with increasing distance

Rx at 3 m

Rx at 10 m

Rx at 30 m

Position Estimates

Magneto Inductive

- Rapid amplitude decay also means higher accuracy within a specific range.
- Magneto Inductive can be coupled with Inertial Sensors to allow for graph optimization.

Millimeter wave

Millimeter Wave Radar

- Independent of illumination condition and infrastructure (e.g. GPS or Wi-Fi)
- Functional under poor visual conditions due to
 - thick smoke
 - heavy fog
 - high temperatures and
 - falling debris

Millimeter Wave Radar

Advantages:

- Provides accurate range-measurement
- Gathers readings at close range, and
- Operates at low peak power

Challenges:

- Sidelobes—radiation sent in unintended directions and
- Multipath reflections that occur when a wave encounters additional reflection points before returning to the receiver antenna

Millimeter Wave Radar-Our Approach

- <u>Idea:</u> To use MM-Wave short range radars as the main means for pose perception to improve the precision of pose estimates and map reconstruction
- Radar odometry based on the normal distributions transform (NDT) scan matching approach aided by IMU

Millimeter Wave Radar Odometry

• Estimated trajectory compared with ground-truth trajectory

Millimeter Wave Radar

Sparse measurements from radar scan in smoke-filled environment
Thermal data
Radar data

Millimeter Wave Radar

- Millimeter wave radar is a promising sensing technology capable of penetrating smoke.
- When compared to Lidar, Millimeter Wave radar produces fewer points, which in turn leads to faster processing.

Thermal

Thermal

Advantages:

- Functional under heavy smoke, etc.
- Enough information to identify object' s shape
- Ideally compatible with state-of-the-art algorithms for vision

Challenges:

- Lack of visual features
- Dynamic range depends on temperature
- Require Non-uniform Correction (NUC)

Deep Thermal-Inertial Odometry

- Train end-to-end with raw thermal radiometric data + IMU
- Augmentation

*

- Random trajectory splitting
- Mean shifting on radiometric data

×

National Institute of Standards and Technology U.S. Department of Commerce

Deep Thermal-Inertial Odometry

Test in Oxford College Building

*

National Institute of Standards and Technology U.S. Department of Commerce

Deep Thermal-Inertial Odometry Test in firefighter training facility with smokefilled environment

Deep Thermal-Inertial Odometry

- Thermal imaging is a common tool in firefighting
- This is the first work to consider using it to accurately track location

Foot-mounted inertial navigation

Summary

- Multi-sensor approach derisks the failure of a single sensor e.g. due to thick smoke or occlusions
- Individual components for odometry are progressing well
- Iterative approach of testing in the lab and in the wild is yielding benefits in balancing complexity and reality
- Next steps are selective sensor fusion and system integration
- One step closer to the goal of robust first responder tracking

Thank you

<u>Contacts:</u> niki.trigoni@cs.ox.ac.uk andrew.markham@cs.ox.ac.uk

#PSCR2019

Come back for the **Next Session**2:40 PM