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Abstract— To our knowledge,the indoor location systemwhich
curr ently achieves the best performance using inexpensive off-
the-shelfequipment locatesa mobile within 1.5 meterswith prob-
ability 77% in hallways. Even while maintaining this accuracy,
the systemoften reports logical errors such as the mobile in the
wrong cubicle of an office or even on the wrong side of a wall
when broadening the domain of application to within rooms.
We proposean extension of the work using the same Mark ov
localization framework, however incorporating systemdynamics
(necessitating no post-processing of the output) and motion
constraints which implicitly encodethe physical propertiesof the
survey area.Our systemretainsthe advantagesof its predecessor
of low cost, wir elessLAN connectivity and security, and large-
scaledeployment,however extendingthe survey areafr om simple
hallways to the whole office envir onment, while maintaining the
sameprecisionwithout logical errors.

I . INTRODUCTION

While someinexpensivereceiversusingtheGlobalPosition-
ing Systemachieve locationaccuracy of 10 meterswith prob-
ability 95% outdoors [1], systemsbasedon this technology
fail indoorsdueto limited receptionandharsherenvironments
createdby severe multi-path fading. Indoor solutions exist
whichfurnishsubmeterprecision[2], [3], [4], however they re-
quire expensive hardwareand/or sophisticatedcalibration. To
our knowledge,the systemdescribedin [5] achieves the best
performanceavailable using cheapoff-the-shelf equipment:
this benchmark algorithm locatesa mobile user in hallways
within 1.5mwith probability 77%giventheproper placement
of IEEE 802.11 basestations.Even while maintaining this
accuracy, thesystemoftenreports logical errors suchasin the
wrongcubicle of anoffice or evenon thewrongsideof a wall
whenbroadening the domain of applicationto within rooms.
Suchperformanceproves unacceptable for applications such
aslocation-basedrecognition or emergency rescueoperations.

In this paper, we describe an extensionof the benchmark
algorithm usingthesameMarkov localization, however incor-
porating systemdynamics(necessitatingno post-processingof
theoutput) andmotionconstraintswhich implicitly encode the
physical properties of the survey area.Our systemretainsthe
benefitsof theirs in its low cost, large-scaledeployment to
mostindoor environments without precision calibration, along
with all the featuresof wirelessLAN including ETHERNET
connection and security, however extending the survey area
to the whole office environmentwhile maintaining the same
precisionwithout logical errors. Like theirs, we describea
general Bayesianinference model which could be adapted to

a systemwith moresophisticatedmeasurement instrumentsto
achieve submeteraccuracy.

The paper organization follows: Section II describesthe
physical system and defines the notation for the Markov
localizationframework. Our key contribution lies in Sections
III andIV wherewe introducethenotions of tracks,neighbors,
and allowed and restricted states.We conduct a series of
experimentsin SectionV to quantify the performanceof the
proposedalgorithmin comparisonto thebenchmarkalgorithm,
followed by a brief conclusion in SectionVI.

I I . PRELIMINARIES

In our implementation,a mobilenodeestimatesits location
by measuringthe signal strengthsof packets received from
a number ��� of fixed basestationsdeployed throughout a
survey area.The integer readings rangefrom -255 to 0dBm.
The locationsystemconsistsof two basicstages:

1) The training stage: Move the mobile nodeto a number
of anchor locations throughout the survey area and
compile signalstrengthsfrom the basestationsto char-
acterizeeachlocation.

2) The localization stage: Move the mobile node to a
query location throughout the survey areaandmeasure
the signal strengthsfrom the basestations.Report the
locationof themobilenodeastheanchor locationwhose
compiled signalstrengths areclosest(by somenorm) to
thosemeasuredat the query location.

An anchor point ��� in a set � of �
	 elementsconsistsof
a location ����
�������������������� , an orientation  ��
�"!��$#%! ,
anda collectionof histogramsfor eachbasestation, &'�)(��+*,�- �/.$./.0��� � #1! . Since no single continuous density function
for the measurement model adequately representsthe signal
strengthdistribution [6], we model themulti-pathfading char-
acteristicsat eachanchor point empirically through a seriesof
measurements.An observation 23�54 6879�/.$.$./��6;:=<?>A@+B comprises
a singlesignalstrengthreadingfrom eachof thebasestations.
A seriesof �3C observations 2ED?�GFH� - �$./.$.0�I�JCK#L! at point� � enables computing a histogram & �)( of signal strengths for
eachbasestationindexed through * :

&M�)(�NPO�QR� !�3C :TSU>V@W
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where
Z

representsthe Kronecker delta function.



I I I . MARKOV LOCALIZATION

A. First-Order Markov Process

Our model consistsof a finite number �a` of states.Statebdc �e�;f 7c �/.$./.0�Ifhg >A@c � is a sequence of ordered points from
the set � which representsthe last i points traversedby the
mobile,if in thatstate.Thebenchmarkalgorithmusesa single
point asa stateof the model; incorporatingmorepoints than
one captures not only the location of the mobile at a single
instantin time, but alsothedynamics of motion. At eachtime
step j , thealgorithm calculatesthea posteriori probabilitiesof
themodelk�N b;lc9m 2 7 �$./.$./��2 l Q giventheobservationssinceinitial-
ization.A first-orderMarkov processgovernsthe transitionof
statesfrom a time step j=#_! to the next [7]

k�N b lc m 2 7 �$./.$.$�I2 l Q9�on l+p kTNq2 l m b lc Q :=r+>A@W st X 7 k�N b lc m b l >A@
st Q p k�N b l >A@st m 2 7 �$./.$.0�I2 l >V@ Qd�

(2)
wherethe normalizing term n l �u!TvJw : r >V@c X 7 kTN b/lc m 2 7 �/.$./.0��2 l Q
enforcesthelaw of total probability. Thealgorithm reports the
output point (location and orientation) of the systemat each
step j as f g >V@x � b x ��y{zI|{}~y��c k�N b lc m 2 7 �$./.$.$�I2 l Q .

Sincean observation at time j affects only the component
of a stateat the sametime (andafter), the a priori probabilityk�Nq2 l m b/lc Q���kTNq2 l m � � ��f g >A@c Q is given by the histograms at
point � �

k�Nq2 l m ����Q'� :T<�>A@�( X 7 &M��(�Nq6 l( Qd. (3)

To improve the reliability of the system,our implementation
actuallymeasuresthe signalstrengthsof packetsboth to and
from thebasestationsastwo independentreadings.Eachpoint
in turn maintains two histogramsper basestationratherthan
one,doubling the elementsof the product in (3).

B. SystemDynamics

As describedin [5] and confirmed through our testing,
signalstrengthsfluctuateover time at the samepoint. Rather
than translatethese perturbations into random motion, the
benchmark algorithm employs temporal averaging and out-
lier suppression by post-processingthe output. While this
improves location tracking in their experimentsknowing the
trajectoriesfor simplewalks up a hall andback, it fails with
morecomplex trajectories within a room. Ratherthanprocess
theoutput a posteriori, we encodethesystemdynamics in the
time-invariant statetransitionprobabilities a priori to promote
fluentmotionwith constantvelocityor direction, yet providing
for abrupt changes.

Eachstatemaintainsa limited number of statesto which it
cantransitionat the next stepin order to ensurecontinuity of
locationin time.Moreprecisely, thestatetransitionprobabilityk�N b0c m b st Q is non-zeroonly for thosecandidate statesb8c which
meetthecondition b D >V@c � b D st ��FA�u!��$./.$.0��iJ#�! ; in otherwords,
if b0c is a left-shift of b st with replacementof f g >V@c with another
elementin � . The systememploys the first i�#�! points of

state b st to predict the next location �� in thesequencethrough
the Nqia#�!;Q -tap FIR filter

���� g >V@W DYX @R� D p � D
st � g >��W DYX 7�� D p � Dc � (4)

where the coefficients � D denote the parameters of the op-
timum prediction filter [8] used in our implementation,but
others filters may be applied as well. The state transition
probabilities below encode the systemdynamicsby favoring
points f g >A@c closest to the predicated location �� assuming
Gaussiannoisefor the locationmodel,

kTN b c m b st Q'� !��� ��� ��� >����� �M��� �{�{� �� >R������ � � (5)

where � controls the degreeof falloff.

C. TheCONDENSATION Algorithm

Grid-basedMarkov localization handles multi-modal and
non-Gaussiandensities and can solve the wake-up robot and
kidnapped robot problems [9] by discretizing the the state
spaceat someresolution; however it suffers from the disad-
vantagesof computationaloverheadanda priori commitment
to size of the statespace.Computational overheadis indeed
anissuefor locationinstrumentswhich areoftenvery small in
size[4], [11]. In our implementation, the number of potential
statesincreasesexponentially with the order of the systemi , potentially burdening our COMPAQ IPAQs running only
at 200MHz, especiallywith most of the processingpower
dedicated to the communicationservices.

The CONDENSATION algorithm, which falls into into the
general classof particle filters, offers an alternative approach
to grid-basedMarkov localization. Rather than representa
posteriori density for each discretizedstate in the model,
it maintains a set of �~�¡ %  �,` samplesdrawn fromk�N b l >A@c m 2 7 �$.$./.$�I2 l >V@ Q andpropagatesthedensityin aniterative
fashionto thenext time step j . It hasproven to be a powerful
tool in recentyearsin the context of Bayesianestimationand
computer vision. Thedetailsof the algorithm canbe found in
[10].

IV. MOTION CONSTRAINTS

Radiolocationusingsignalstrengthsaloneprovesa difficult
task due to multipath fading and its intrinsic non-linearity:
points close to each other may bear very different signal
strengths while points farther apart very similar ones.This
makesraw mapping a querypoint to the closestanchor point
unreliable. The office environment typically offers between
25% and 40% walking spacebetweendesks,bookshelves,
cubicles, and other furniture and equipment. While such
obstaclesseverelyconstrainthepathsof a human,they cannot
reliable differentiate two points a meter apart on opposite
sidesof a deskgiven the free spacebetweenthem, or even
two points a meter apart on opposite sides of a plaster or
drywall; yet applications such as location-basedrecognition
or fire-rescueoperationsrequirerobust discrimination in these
examples respectively. While the signal strengthsalonefrom



multiple basestationsmaynot suffice to isolatea signalpoint
in the training space,the sequence of points from the past
observationsmay be able to do so.

A. Tracks and Neighbors

Fig. 1 illustratesa sectionof the fourth floor of the NIST
Northbuilding in Gaithersburg,Maryland (not to scaleto avoid
clutter).Six pathsdisplayedin differentshadings connect any
two locations in the office environment.The two arrows at
each location represent the two anchor points trained with
opposite antenna orientations,splitting a pathinto two tracks.
By training eachpoint with the antenna orientation aligned
with the heading of the person,a human walking forward
on a path follows the points on either one track or its
complementtrack.Underthe assumptionthat a human walks
only forward andthattheantennaorientation remainsconstant
with respectto a person’s heading, we can imposemotion
constraints to the systemto promote motion alongthe tracks.
This assumptionholds in many locationsystemstodaysuchas
popular ActiveBat, Cricket, or Radar, eachrequiring a beacon
device which could be fastenedto a human’s belt or security
badge, or in otherapplications to a firefighter’s helmet.

Let eachpoint in � have a limited set of points, called
neighbors, thatcanimmediately succeedit in a stateseqeunce.
We imposemotionconstraints suchthatamobilemusttraverse
a sequenceof neighbors in orderto reachonepoint from an-
other. Usinga sequenceof neighborsasanallowedstateof the
model (andrestrictingstateswhich do not soconform) proves
a highly effective manner to reconstruct a path from a series
of observations.While classicalKalmanfiltering may predict
the trajectoryof a human through a wall by considering only
trajectorylocations, motion constraints provide a blueprint of
the areaencoded through the allowed states,so the system
knows that humansmustgo through doors to reachlocations
on opposite sidesof a wall. Both the notion of neighbors and
trackscanbe encoded in the statemodelof the system.

Most points have threeneighbors: 1. itself to allow static
motion in time; 2. next point on sametrack to allow motion
in the same direction; 3. point at same location on the
complement track to allow a change in direction.Exceptions
occur for pointsat the endof a track with no next point and
as a result only two neighbors, i.e. point 36; and for points
falling at the T-junction of pathswith additional neighbors
enabling the mobile to switch paths, i.e. points 19 and 54
have additional neighbor 105 to enterRoom 444 from either
direction in Hallway, and point 94 hasneighbors 19 and 54
to exit the room walking into eitherdirection. Note that point
105 doesnot have neighbors19 and54 andpoints19 and54
do not have neighbor 94, prohibiting walking backwards. In
order to promote motion along tracks,we restrict stateswith
more than one track transitionbetweenany two consecutive
pointsin its sequenceandpenalizestatetransitionprobabilities
in (5) betweenb st with no track transitions and b�c with one
track transitionby multiplying themby

-  ¢k l¤£+¥ g `\ K! . Table
I lists examples of allowed and restrictedstatesin reference
to Fig. 1.

Clearly the systemcanalsobe trainedfor humans walking
backwards,penalizing thecorrespondingstateswith a smaller

TABLE I

ALLOWED AND RESTRICTED STATES FOR ¦G§�¨
Allowed Restricted Reason

0-0-1-2 0-2-2-3 2 not neighbor of 0
0-1-1-1 0-1-2-1 1 not neighbor of 2

0-1-72-73 0-1-71-72 71 not neighbor of 1
72-73-0-1 72-73-0-73 Changes tracks twice in sequence

71-71-72-73 2-71-2-71 Changes tracks twice in sequence

probability of occurrence. The systemcan also localize in
large, open spacesby creatinga grid of points rather than
tracksandapplying appropriatemotion constraints.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

In order to assesstheperformanceof theproposedalgorithm
in comparisonwith thebenchmarkalgorithm, we conduct four
separateexperimentsin the confined areaslabeledRoom441,
Room 444, Conference Room, and Hallway in Fig. 1. The
circles indicatethe �~�©�ª] basestationsplacedstrategically
throughout the floor, from which we gather �¢C«� ! -9-
measurements at each of the � 	 �¬!;��­ points at the rate
of 10Hz to compile the histograms;so it took roughly a half
hour to train the systemplus the assignment of neighbors.
The localizationstagewas run at 2Hz: high enough to allow
tracking from normal to fast walking speed,yet low enough
to recognize statesequenceswith points at multiple locations.

To replicatethebenchmarkalgorithm wetookouralgorithm
and set i5�"! , removing our systemdynamics and motion
constraints and replacingthem with more relaxed ones such
“that people don’t travel too fast or changedirections too
frequently,” as describedin [5]. Our algorithm was run withi®��] resulting in �~`¯�°�9���{­ allowed states.The CON-
DENSATION algorithm was usedfor both the proposedand
benchmark algorithms, using �a�[�±� -9- samplesfor each.
The parametersfor both algorithms were tunedto obtain the
bestresultsfor eachindependently, with ² l¤£+¥ g ` � - . ] for the
proposedalgorithm.

Our experiments not only quantify the location accuracy
of the two algorithms,but alsoclassifylogical errors reported
according to theindividual area.Thesystemreports a location
correctly if both the query andoutput pointsare:³ Rooms441: on the samesideof the partition (shadedin

black).³ Room 444: on the samesideof the bookcase(shadedin
black).³ Conference Room: on the samehalf of the table(shaded
in black).³ Hallway: in the sameof the threesegments.

We carriedout 100trials for eachexperimentandcompiled
statistics for both algorithms. Each trial consistedof the
following steps:

1) Move to an anchor point in the confined area and
initialize both algorithms with probability 1.0 at that
point.

2) Startboth algorithms.
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Fig. 1. Section of the fourth floor of the NIST North building in Gaithersburg, Maryland.

3) Move to a query location@ within 1.5m of any anchor
point in thesameconfinedarea.While covering mostof
theconfinedarea,this alsoensuresthatperfect localiza-
tion guaranteesaccuracy within 1.5m for all trials.

4) Let the algorithms stabilizeandrecordfor each:³ IF the algorithm commits a logical error, recordX.³ ELSE, recordthe error distancebetweenthe query
locationandthe output point roundedto 0.25m.

5) Goto step1.

B. Results

Theresultsin [5] arealsocompiled from four experiments,
however just in separatehallways;thebestof thefour � locates
77% of the trials within 1.5m before post-processing.In
our experimentswith the benchmark algorithm, a significant
fractionof thetrialswhichindeedlocalizewithin 1.5marenow
categorizedaslogicalerrors,causingthis valueto dropto 46%
(38% X) for Room441, 60% (27% X) for Room 444, 37%
(48%X) for ConferenceRoom, and51%(42%X) for Hallway.
The respective valuesfor theproposedalgorithmfollow: 74%
(20%X), 76%(15%X), 75%(10%X), and77%(9% X). The
cumulative distribution function for the four experimentswe
conductedappearin Fig. 2 for the proposedalgorithm(solid
line) andthe benchmarkalgorithm (dashed line).

The experimentsconducted in ConferenceRoom reveal the
greatestdisparityin performance betweenthe benchmark and
proposedalgorithms.Hereonly freespacelies betweenpoints
on opposite sides of the table, and as a result they bear
histogramstoosimilar for robust discriminationbetweenthem.
This experiment underscoresthe strength of the proposed´

The trajectory between the init ial anchor point andthequerylocation was
often complicated, i.e. moving up to two timesfrom onesideof the bookcase
to another in Room444 or around the table, switch direction, andbackagain
in ConferenceRoom.µ

Attributed to a relatively favorable placementof the basestation in the
middle of this hallway.

algorithm, where information about the final point doesnot
suffice to isolate it; rather information about the trajectory
from the initial point must also be taken into consideration.
The proposedalgorithm converged quickly and stably to a
point, while thebenchmarkalgorithm oftenfluctuatedbetween
two points (in which the averageerror was reported in com-
piling the statistics),necessitatingpost-processing.

Despitethe temporal fluctuations in the point histograms,
the systemperforms reliably after one month elapsedupon
training, evenafterreturning thebasestationsto their cabinets
numerous times for recharging and again redeploying them
eachtime to their marked positions. While the actualmotion
of the mobile may not conform to any stateof the model,the
algorithm estimatesthebestoneaccording to theobservations,
andprovesrobustto deviations.While augmentingthenumber
of statesin the model by training the systemwith locations
less than a meter apart (or more orientations than two)
may enhance the recognition capabilitiesof the system,the
corresponding histogramsmay not differ sufficiently between
them, or even may be more similar to a point at a different
location. This makes the systemmoresusceptibleto to noise
andfalsealarm,fluctuating betweena number of points.

VI . CONCLUSIONS AND FURTHER WORK

The application of our systemeasily extends to multiple
floors. Indeed the proposedalgorithm provesmore robust for
example by forcing themobile userto descendaflight of stairs
to reacha lower floor through the allowed states,ratherthan
oscillatebetweentwo points a few metersapartwith similar
histogramson different floors.

Researchon our location systemfalls in the context of a
First-Responders Testbed, stressingthe need for the ad-hoc
network to organizeindependently of any human interaction.
Wearecurrently investigating approachesto mergethetraining
and localization stages,hence have the system learn the
point histograms as the mobile movesaboutwith no a priori
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Fig. 2. Comparison of the proposedalgorithm (solid line) to the benchmark algorithm (dashedline).

knowledgebesidesa blueprint of the survey areadownloaded
from a public server and the positions of the basestations
deployed on site.
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