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Abstract— To our knowledge,the indoor location systemwhich
currently achieves the best performance using inexpensve off-
the-shelfequipment locatesa mobile within 1.5 meterswith prob-
ability 77% in hallways. Even while maintaining this accuracy,
the systemoften reports logical errors such as the mobile in the
wrong cubicle of an office or even on the wrong side of a wall
when broadening the domain of application to within rooms.
We proposean extension of the work using the same Mark ov
localization framework, however incorporating systemdynamics
(necessitating no post-processing of the output) and motion
constraints which implicitly encodethe physical propertiesof the
survey area.Our systemretainsthe advantagesof its predecessor
of low cost, wirelessLAN connectvity and security, and large-
scaledeployment,however extendingthe survey areafrom simple
hallways to the whole office environment, while maintaining the
same precisionwithout logical errors.

I. INTRODUCTION

While someinexpensve recevers usingthe Global Position-
ing Systemachieve locationaccuray of 10 meterswith prob-
ability 95% outdwrs [1], systemsbasedon this technolagy
fail indoors dueto limited receptionandharsherervironments
createdby severe multi-path fading Indoor solutions exist
which furnish submeer precision[2], [3], [4], howeverthey re-
quire expersive hardvare andor sophisticatedcalibratian. To
our knowledge,the systemdescribedn [5] achievesthe best
perfamance available using cheap off-the-shelf equpment:
this bendimark algorithm locatesa mobile userin hallways
within 1.5mwith prabability 77% giventhe prope placemen
of IEEE 80211 basestations.Even while maintainirg this
accuray, the systemoftenrepats logical errors suchasin the
wrong culicle of anoffice or evenon thewrongsideof awall
when broadning the donmin of applicationto within roorrs.
Such perfamanceproves unaccetable for applicdions such
aslocation-lasedrecogition or emegeng/ rescueopaations.

In this paper we descrile an extensionof the benchnark
algoritm usingthe sameMarkov localization however incor
poratirg systemdynamics(necessitatingio post-pocessingf
the outpu) andmotionconstraintsvhich implicitly encoa the
physical propeties of the surwey area.Our systemretainsthe
benefitsof theirsin its low cost, largescale deployyment to
mostindoa ervironmerts without predsion calibration along
with all the featuresof wirelessLAN including ETHERNET
conrection and security however extendng the surey area
to the whole office environmentwhile maintairning the same
precisionwithout logical erras. Like theirs, we describea
geneal Bayesianinfererce modé which could be adaped to

a systemwith more sophisticateaneasurema instrumentgo
achiere submetetaccuray.

The paper organization follows: Section Il describesthe
physical system and defines the notation for the Markov
localizationframework. Our key contritution lies in Sections
Il andIV wherewe introducethe notiors of tracks,neighbors,
and allowed and restricted states.We condict a series of
experimentsin SectionV to quariify the perfomanceof the
proposedalgorithmin compaisonto the benctmarkalgorithm
followed by a brief condusionin SectionVI.

Il. PRELIMINARIES

In our implementation,a mobile nodeestimatests location
by measuringthe signal strengthsof paclets received from
a nunber N, of fixed basestationsdeplg/ed throughait a
suney area.The intege reading rangefrom -255 to 0dBm.
The location systemconsistsof two basicstages:

1) Thetraining stage: Move the mobile nodeto a numter
of andhor locations throudhout the surney area and
comple signalstrengthsrom the basestationsto char
acterizeeachlocation.

2) The localization stage: Move the mokle noce to a
quey locationthroughaut the surney areaand measure
the signal strengthsfrom the basestations.Reportthe
locationof the mobilenodeastheanctor locationwhose
compled signalstrengtls areclosest(by somenorm) to
thosemeasuredt the quely location

An ancha poirt y; in asetY of N, elementsconsistsof
a locationx; € R%,d = {2,3}, an orientdion §; = 1,1,
anda collectionof histogamsfor eachbasestation,h ;;, k =
0,...,N, — 1. Since no single continwous density function
for the measurment mocel adequately repesentsthe signal
strengthdistribution [6], we model the multi-pathfading char
acteristicsat eachancha point empiically throuch a seriesof
measurments.An obseretion z = [zg,. .., zn,_1] COMpises
a singlesignalstrengthreadingfrom eachof the basestations.
A seriesof N,, obserationsz!, I =0,...,N,, — 1 at point
y; enatbes compuing a histogramh;, of signal strengtls for
eachbasestationindexed throudh &:

Np,—1
ha(Q) = - D0 8= Q) ~25<C<0 ()
™ =0

whered representghe Kronecler deltafundion.



1.
A. First-Oder Markov Process

Our mockl consistsof a finite numter N, of states.State
= {s9,.. .,sg‘_l} is a sequene of ordered points from

the setY which representsthe last n pointstraversedby the
mobile,if in thatstate. The bendqimarkalgorithmusesa single
point as a stateof the model;incoiporatingmore pointsthan
one capturs not only the location of the mokile at a single
instantin time, but alsothe dynanics of motion At eachtime
stept, the algoiithm calculateghe a posterioi probabilities of
themodelp(s|z°, zt) giventhe obsenationssinceinitial-
ization. A first-orderMarkov process governsthe transitionof
statesfrom a time stept — 1 to the next [7]

MARKOV LOCALIZATION

N,—1

p(s§lz’, ..., 2") =n'p(a'ls}) Y p(shlsi ) p(ss 2’ 2" )
j=0

)

wherethe nomalizingtermn?t = 1 Ej.vzso_l p(st|2, ..., 2")

enforcesthelaw of total prokability. The algaithm repats the
outpu poirt (location and orientation of the systemat each
stept ass} !, s. = argmaxp(sh|z°, ..., z").

Sincean obsenation at time ¢ affects only the compment
of a stateat the sametime (andafter), the a priori probability
p(z'ls}) = p(z'ly; = s}~") is given by the histograns at
point y;

Np—1

H h,k Zk

To improve the reliability of the system,our implemenation
actually measureghe signal strengthsof paclets both to and
from the basestationsastwo independentreading. Eachpoint
in turn maintairs two histogramsper basestationratherthan
one,dowling the elementsof the prodict in (3).
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B. SystenDynamics

As describedin [5] and confimed through our testing,
signal strengthgfluctuateover time at the samepoint. Rather
than translatethese pertubatiors into randbm motion the
bencmark algorithm emplo/s tempaoal averagng and out-
lier suppessionby post-pocessingthe output. While this
improves location tracking in their experimentsknowing the
trajectoriesfor simple walks up a hall andback it fails with
more compex trajectoies within aroom Ratherthanprocess
the output a posterioi, we encodethe systemdynanicsin the
time-invariant statetransitionprobailities a priori to promde
fluentmotionwith constantselocity or direction yet providing
for abript changs.

Eachstatemaintainsa limited nunber of statesto which it
cantransitionat the next stepin orde to ensurecontintity of
locationin time. More preciselythe statetransitionprabability

p(s;|s;) is nonzeroonly for thosecandidate statess ; which
meetthe condtion sl 1= sl I=1,...,n—1;in othewords
if s; is aleft-shift of s5 with replacerentof CH ! with another
elementin Y. The systememploys the flrst n — 1 points of

?

states; to predct the next locationx in the sequencehrough
the (n — 1)-tap FIR filter

SNE

where the coeficients a! dende the parametes of the op-

timum predction filter [8] usedin our implementation, but

othes filters may be applied as well. The state transition
prababilities belov encale the systemdynamics by favoring

poirts s;’_l closestto the predicded location x assuming
Gaussiamoisefor the locationmodel,

1
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whereo contrds the degree of falloff.
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p(sjlsz) =

C. The CONDENSAION Algorithm

Grid-based Markov localization handes multi-modal and
nonGaussiandersities and can solve the wake-up robot and
kidngpped robot problems [9] by discretizing the the state
spaceat someresolution; however it suffers from the disad-
vantags of computationaloverheadanda priori commitnent
to size of the statespace.Computatimal overheadis indeal
anissuefor locationinstrunentswhich areoftenvery smallin
size[4], [11]. In our implemeration, the numter of potential
statesincreasesexponentially with the order of the system
n, potentially burdering our COMPAQ IPAQs runring only
at 200MHz, especiallywith most of the processingpower
dedicded to the communication services.

The CONDENSATION algorithm which falls into into the
geneal classof particle filters, offers an alternatve appioach
to grid-basedMarkov localization. Rather than representa
posterioi density for each discretized state in the mockl,
it maintairs a set of N, << N, samplesdravn from
p(s§*1|z°, ,z!~1) andpropagateghe densityin aniterative
fashionto the next time stept. It hasprovento be a powerful
tool in recentyearsin the context of Bayesianestimationand
computervision. The detailsof the algoithm canbe found in
[10].

IV. MOTION CONSTRAINTS

Radiolocationusingsignalstrengthsaloneprovesa difficult
task due to multipath fading and its intrinsic nonlinearity:
poirts close to each other may bear very differert signal
strengtls while points farther apart very similar ones. This
malkesraw mappng a querypoirt to the closestancha point
unreliable. The office ervironment typically offers between
25% and 40% walking spacebetweendesks, bodksheles,
cubicles, and other furniture and equipnent. While such
obstacleseverely constrainthe pathsof a human, they canrot
reliable differertiate two points a meter apart on opposite
sidesof a deskgiven the free spacebetweenthem, or even
two points a meter apart on oppaite sides of a plasteror
drywall; yet applications such as locationbasedrecogition
or fire-rescueoperdions requirerobust discriminatian in these
exanplesrespectrey. While the signal strengthsalone from



multiple basestationsmay not suffice to isolatea signalpoint
in the training space,the sequene of points from the past
obserationsmay be ableto do so.

A. Tradks and Neighbos

Fig. 1 illustratesa sectionof the fourth floor of the NIST
North building in Gaitherslrg, Marylard (notto scaleto avoid
clutter). Six pathsdisplayedin differentshading conrectary
two locatiors in the office ervironment. The two arrows at
eachlocation representthe two anche points trained with
oppgcsite antenia orientatios, splitting a pathinto two tracks.
By training each point with the antenia orientation aligned
with the headng of the person,a human walking forward
on a path follows the points on either one track or its
compementtrack. Underthe assumptiorthat a human walks
only forward andthatthe antennaorientation remainsconstant
with respectto a persons headirg, we can impose motion
constraims to the systemto pronote motion alongthe tracks.
This assumptiorholds in mary locationsystemsodaysuchas
popuar ActiveBat Cricket, or Rada, eachrequiting a beacon
device which could be fastenedo a humans belt or security
badg, or in otherapgicationsto a firefighters helmet.

Let eachpoirt in Y have a limited set of poirts, called
neighbors, thatcanimmedately succeedt in a stateseqgeunce
We imposemotionconstraims suchthata mobilemusttraverse
a sequencef neighlorsin orderto reachone point from an-
other Usinga sequencef neighborsasanallowedstateof the
modé (andrestrictingstateswhich do not so conform) proves
a highly effective manrer to recorstructa pathfrom a series
of obserations.While classicalkalmanfiltering may predct
the trajectoryof a human through a wall by consigring only
trajectorylocatiors, motion constrais provide a bluepint of
the areaencoad through the allowed states,so the system
knows that humansmustgo throudh doas to reachlocations
on oppasite sidesof a wall. Both the notion of neighlors and
trackscanbe encoekd in the statemodel of the system.

Most points have three neighlors: 1. itself to allow static
motion in time; 2. next point on sametradk to allow motion
in the same direction; 3. point at same location on the
complementradk to allow a chang in direction. Exceptios
occurfor pointsat the end of a track with no next point and
as a result only two neightors, i.e. point 36; and for points
falling at the T-junction of pathswith addtional neigtbors
enablirg the mokle to switch paths,i.e. points 19 and 54
have additicnal neighbor 105 to enterRoan 444 from either
directionin Hallway, and point 94 hasneigtbors 19 and 54
to exit the roomwalking into eitherdirection. Note that point
105 doesnot have neighbors 19 and54 and points 19 and 54
do not have neightor 94, prohibiting walking backwards. In
orderto promde motion alongtracks,we restrict stateswith
more than one track transition betweenary two corsecutve
pointsin its sequene andpenalizestatetransitionprobabilities
in (5) betweens; with no track transitiors ands; with one
track transitionby multiplying themby 0 < p¢qns < 1. Table
| lists exanples of allowed and restrictedstatesin refererme
to Fig. 1.

Clearly the systemcanalso be trainedfor humars walking
backwards, penalizirg the correspnding stateswith a smaller

TABLE |
ALLOWED AND RESTRICTED STATESFORn = 4

[ Allowed [ Resticted | Reasm
0-0-1-2 0-2-2-3 2 not neightor of 0
0-1-1-1 0-1-2-1 1 not neightor of 2
0-1-72-73 0-1-7172 | 71 not neighbor of 1
72-73-0-1 72-73-0-73| Changestrads twice in sequene
71-7172-73 || 2-71-271 | Changstrads twice in sequene

prabability of occurence. The systemcan also localize in
large, open spacesby creatinga grid of points rather than
tracksand applyirg appopriate motion constraifs.

V. EXPERIMENTAL SETUP AND RESULTS
A. Experimetal Setup

In orderto assesshe perfamanceof the proposedalgorithm
in comparisonwith the benctmarkalgoiithm, we conduct four
separatexperimentsin the corfined areadabeledRoom441,
Room 444, Confeence Room and Hallway in Fig. 1. The
circlesindicatethe N, = 5 basestationsplacedstratgjically
throughou the floor, from which we gather N,, = 100
measurments at each of the N, = 124 points at the rate
of 10Hz to compile the histogramsso it took roughly a half
hou to train the systemplus the assignmen of neigtbors.
The localizationstagewas run at 2Hz: high enoudp to allow
tracking from nomal to fastwalking speed,yet low enaigh
to recogiize statesequencewith points at multiple locations.

To replicatethe bencimarkalgoithm we took our algoritim
and setn = 1, removing our systemdynamics and motion
constraims and replacingthem with more relaxed ones such
“that peopledon't travel too fast or changedirections too
frequently” as describedin [5]. Our algoithm was run with
n = 5 resultingin N, = 3334 allowed states.The CON-
DENSATION algorittm was usedfor both the proppsedand
bencimark algorithms, using N, = 200 samplesfor each.
The paranetersfor both algorithms were tunedto obtainthe
bestresultsfor eachindependetly, with P,.,,, = 0.5 for the
proposedalgorithm.

Our expeiiments not only quantify the location accurag
of the two algorittms, but alsoclassifylogical erra's repoted
accordng to theindividual area.The systemrepots alocation
correctly if boththe quely andoutpu pointsare:

« Roans 441 on the sameside of the partition (shadedn
black.

« Roam 444 on the sameside of the bodkcase(shadedn
black).

« Confeene Roan: on the samehalf of the table (shade
in black).

« Hallway: in the sameof the threesggmeris.

We carriedout 100trials for eachexpeiimentandcompled
statistics for both algoithms. Each trial consistedof the
following steps:

1) Move to an anclor point in the confinal area and
initialize both algoithms with prokability 1.0 at that
poirt.

2) Startboth algorithns.
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3) Move to a quey location' within 1.5m of any anchor
pointin the sameconfinedarea.While covering mostof
the confinedarea,this alsoensureghat perfectlocaliza-
tion guarameesaccurag within 1.5mfor all trials.

4) Let the algorithns stabilizeandrecordfor each:

« IF the algoithm comnits a logical error, recordX.
« ELSE, recordthe error distancebetweenthe query
locationandthe outpu point rourdedto 0.25m.

5) Gotostepl.

B. Results

Theresultsin [5] arealsocompled from four experiments,
however justin separatdallways;the bestof the four? locates
77% of the trials within 1.5m before post-pocessing.In
our experimentswith the bencimark algorithm a significant
fractionof thetrials whichindeedocalizewithin 1.5marenow
catgyarizedaslogical errors,causingthis valueto dropto 46%
(38% X) for Room441, 60% (27% X) for Roan 444, 37%
(48%X) for ConfeenceRoom and51%(42%X) for Hallway.
Therespectie valuesfor the propcssedalgorithmfollow: 74%
(20% X), 76% (15% X), 75%(10% X), and77% (9% X). The
cumdative distribution function for the four experimentswe
condictedappearin Fig. 2 for the proposedalgorithm (solid
line) andthe bentcimarkalgoithm (dasted line).

The expeimentscondictedin ConfeenceRoan reveal the
greatestisparityin perfamane betweenthe benchmark and
proposedalgoithms. Hereonly free spacdies betweerpoints
on opposite sides of the table, and as a result they bear
histogranstoo similar for robust discrimirationbetweerthem.
This expeliment uncerscoresthe strength of the proposed

I Thetrajectory betwea the initial andhor point andthe querylocation was
often complicated, i.e. moving up to two timesfrom oneside of the bookcae
to another in Room444 or arownd the table switch direction, and back again
in ConfeenceRoom

2Attributed to a relatively favorade placementof the basestatian in the
middle of this hallway.

Sectbn of the fourth floor of the NIST North building in Gaithershurg, Maryland.

algotithm, where information aboutthe final point doesnot
suffice to isolate it; rather information abou the trajectoy
from the initial point must also be taken into consideation.
The proposedalgorithm corverged quickly and stably to a
poirt, while the bendimarkalgoithm oftenfluctuatedoetween
two points (in which the averageerra was repated in com-
piling the statistics),necessitatingpost-gocessing.
Despitethe tempoal fluctuatiors in the point histogams,
the systemperforms reliably after one morth elapsedupm
training evenafterreturring the basestationsto their cabinets
nunmeroustimes for rechaging and agan redepoying them
eachtime to their marked positiors. While the actualmotion
of the mokile may not confam to ary stateof the model,the
algotithm estimateghe bestoneaccordng to the obsevations,
andprovesrohustto deviations. While augnentingthe numker
of statesin the model by training the systemwith locations
less than a meter apart (or more orientatins than two)
may enhance the recogrition capabilitiesof the system,the
correspondig histogamsmay not differ sufficiently between
them, or even may be more similar to a poirt at a different
location This makesthe systemmore susceptibleo to noise
andfalsealarm,fluctuatirg betweena numter of points.

VI. CONCLUSIONS AND FURTHER WORK

The application of our systemeasily exterds to multiple
floors. Indeal the propasedalgorithm proves more robust for
exanple by forcing themobile userto descendh flight of stairs
to reacha lower floor throwgh the allowed states ratherthan
oscillate betweentwo poirts a few metersapartwith similar
histogamson different floors.

Researcton our location systemfalls in the cortext of a
First-Responers Testbed stressingthe needfor the ad-ha
network to organizeindegendetly of ary human interaction
We arecurrerily investigaing appoachego memge thetraining
and localization stages,hence have the system learn the
poirt histograns asthe mohle movesaboutwith no a priori
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Fig. 2. Comparism of the proposedalgorithm (solid line) to the benchmark algorithm (dashedine).

knowledgebesidesa bluepint of the surwey areadownloaded
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a pubic sener and the positiors of the basestations

deplo/ed on site.
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