

Examination of Advanced Technologies in Characterization, Diagnostics, and Verification at Different Stages in the Manufacturing Lifecycle of Packaged IC Devices

> Colin Ritchie¹, Scott West¹, Stuart Neches¹ Eiji Kato² and Masaichi Hashimoto² 1 Advantest America, Inc. 2 Advantest Corporation

Agenda

- Mold thickness metrology
- Fault isolation
- System level test

Corporate Overview

Founded: U.S. Head Office: Europe Head Office: Other Major Subsidiaries:

_

Business:

Publicly Traded:

Capital: Consolidated Sales: No. of Employees: 1954, Tokyo, Japan San Jose, CA Munich, Germany Singapore, South Korea, Taiwan, China Semiconductor ATE Mechatronics Systems Services, Support & Others Tokyo Stock Exchange (6857)

32.4 Billion Yen162.1 Billion Yen (FY2015)4,494 Worldwide(as of March 2016)

Advantest in Semiconductor Manufacturing

Nondestructive Mold Thickness Metrology for Characterization of Mobile Devices

All Rights Reserved - ADVANTEST CORPORATION

Trouble with mold quality

Mobile phone

IC chip needs

- much smaller
- much thinner
- Higher density mounting

Thin and high strength molding is necessary

- Molding of chip must have:
- thin layer with high strength
- no warps, no bend
- Chip molding defects result in:
- damage to die and wiring
- impact to yield

Quality of molding for protecting die and wires is important

Methodology of mold thickness analysis

In present method :

Cut device and observe edge by microscope

- Limited sample count
- Difficult to understand trends of mold defects in lots
- Difficult to feedback defect info to molding process

In new method :

Non-destructive measurement

- High volume measurement possible
- Understand trend of defects on strip in each lot
- Fix problems much earlier in the process

ADVANTEST

Needed mold thickness measurement solution

Non-Destructive

- Non-ionizing, non-heating does not affect the sample in any way
- Fast high speed measurement for high volume
 - Suitable for volume samples in production environment
 - 250 units/hour, multiple points per device, automatic measurements
- Highly reliable
 - Accuracy roughly 1% at 500um
 - Near zero bias

Applying THz wave to mold layer thickness metrology

- © Mold material (plastic) is transparent for THz wave
- © Adequate mold thickness range
 - 30 µm to several hundred microns
- © Obvious refractive index differences between:
 - mold and Si die
 - mold and substrate

Echo from mold

ADVANTEST

Mold thickness analysis setup

Features

- Nondestructive mold thickness testing using THz TOF method.
- Automated multiple point measurement on singulated chips on JEDEC trays or strips
 - 250 units per hour
 - Multiple points measurement on each unit
- Precise and robust operation
 - Precision: $\pm 3 \ \mu m$

Fingerprint Sensor Example – Mold Thickness

- Mold thickness distribution must be flat/evenly distributed on array for error free finger print sensing
- Must be measured within few micrometer order accurate for thickness quality control.

in production for better quality control.

FPS Mold thickness measurement example

Sample: Experiment: Result: Static capacitance type FPS, 160x160 pixels chips. Thickness data comparison with cut view observed result. All thickness difference to cut view are within $<\pm 5 \mu m$.

ADVANTEST

High Resolution TDR Tool for Diagnostic Failure Investigation in Complex IC Devices

3D integrated semiconductor device trend

2.5D and 3D integration technologies are driving the integration of devices with extremely high interconnect densities and taking place of conventional flip chip bumping technology.

Source : Yole development 2013, "Packaging Key for System Integration," http://www.semi.org/eu/sites/semi.org/files/docs

3D IC

TDR Measurement Needed for 3D Integrated Substrates

Present method (oscilloscope)

- Poor spatial resolution due to large rise time and high jitter
- Resolution limit: Hundreds of μm

• Needed capabilities:

- Detect failures to $5\mu m \rightarrow highly$ accurate failure point location
 - Wider length 300mm \rightarrow
- Software

- measure long propagation lines
- \rightarrow analysis to help find failure location

00000000000

WL CSP(Wafer Level Tip Size Package)

Flip-chip bumping

Semiconductor device failure analysis flow

To identify failure points, emission microscope or oscilloscope TDR are used as usual, however, these methods are limited in identifying OPEN/SHORT fails with high resolution.

Process	Analysis items	Analysis method				
1) Visible check	Delamination/lack	Scanning acoustic microscope(SAM), Scanning acoustic tomography (SAT), transmit X ray, X ray CT				
2) Electrical characteristics	Logic and analog functional/structure test	LSI test system, oscilloscope, network analyzer				
3) Non-destructive test	Line connection fail (SHORT failure)	Emission microscope (EMS) \Rightarrow OPEN failure can not be detect				
4) Identifying failure points	Line connection fail (OPEN failure)	Oscilloscope TDR \Rightarrow Less resolution (less than a few hundreds μ m)				
5) Observation of failure	Observe cut view(3D_CT)	Transmission X ray, X ray CT				
and analysis	Observe surface(nano-scale)	Scanning Electron Microscope (SEM)				
	Crystal particle observe(nano-scale)	Transmission Electron Microscope (TEM)				
	Surface roughness test (nano-scale)	Atomic force Microscope (AFM), scanning probe microscope (SPM)				

Solution to achieve high-resolution fault isolation

Time domain reflectometry (TDR) with ultrafast pulse

- Developed TDR transceiver, consisting of optical based ultrafast pulse generator and sampler.
- The generated pulse includes ultra-broad frequency component from sub-millimeter to sub-terahertz range

FI/FA capability comparison: pulsed TDR vs. conv. TDR

Case #		1			2		3			4		
Fault analysis target portion in the package	Wiring in the package Memory Chip Micro-Bump TSV Si Interposer C4 Bump Package BGA ball Multi layer print substrate		Si interposer (C4 bump) Memory Chip Micro-Bump TSV Si Interposer C4 Bump Package BGA ball Multi layer print substrate		Multi layer memory (TSV, Micro-bump) Memory Chip Micro-Bump TSV Si Interposer C4 Bump Package BGA ball Multi layer print substrate			Wiring failure in printed circuit board Memory Chip TSV Si Interposer C4 Bump BGA ball				
Necessary performance	Ideal	Conv. TDR	TS9000	Ideal	Conv. TDR	TS9000	Ideal	Conv. TDR	TS9000	Ideal	Conv. TDR	TS9000
Distance-to-fault resolution (µm)	< 100	√/×	√ <5	< 100	√/×	√ <5	< 30	×	√ < 5	< 100	√/×	√ < 5
Near end dead zone (μm)	< 200	×	√ < 200	< 200	×	√ < 200	< 30	×	~	< 200	×	√ < 200
Maximum measurable distance (mm)	300	√ > 300	✓ > 300	10	√ > 300	√ > 300	10	√ > 300	✓ > 300	300	√ > 300	√ > 300
Repeatability of contact (µm)	< 30	×	√ < 10	< 15	×	√ < 10	<10	×	√ < 10	< 30	×	√ <10

High resolution analysis capability of TS9000 enables failure analysis on high-dense 3D/2.5D semiconductor packages.

ADVANTEST

TDR/TDT Setup

System configuration

Measurement Unit

Analysis Unit

Optical Delay Unit

System Controller

Probe contact in the probe station

Performance/functions

Items	function		specification			
TDR/TDT capability	Measurement mode Distance-to-fault resolution		TDR, TDT (optional)			
			< 5 μm			
	Rise time (Tr)		12 ps (6 ps and 25 ps are optional)			
	Maximum measurable distance	TDR	> 300 mm@ɛ _{eff} = 3			
		TDT	> 600 mm@ɛ _{eff} = 3			
Analysis function	TDR/TDT Analyzer		 View subtraction of sample and reference as the known-good device data. Peak search/multiple reflection marking 			
CAD Data Link (optional)		nk	• Estimated fault location view at each CAD layer trace.			
Measurement support function	Auto probing		 Soft touch down preventing from probe damage. 			

- 1. Fully automated touchdown and probing
- 2. Recipe-based sequential measurement
- 3. Software analysis
- 4. Failure location estimation and indication on CAD drawing

Failure analysis case: Small BGA package

- Small-BGA has more complexed structure than QFP package
- Failures (via, surface wiring and bonding pad) were made intentionally.
- ⇒ Failure locations were significantly discriminated by reflected pulse position

Thermal Challenges in Endurance vs. Production SSD Testing

All Rights Reserved - ADVANTEST CORPORATION

Endurance vs. Production Test Thermal Challenges

- Endurance Test (or RDT) ensures the device design and manufacturing process meets reliability claims
 - Tight control of test conditions needed to prove results are statistically valid
 - ±5 deg. C per JEDEC (JESD218A)
- Production test ensures that a particular drive was manufactured successfully to specification
 - Devices need to be stressed above the test threshold

Why Thermal Stress Test

- For endurance testing, thermal stress accelerates the time to fail (greatly shortening test time)
- Acceleration adheres to the Arrhenius equation

Arrhenius Equation Predicting Temperature Dependence on Time to Fail

$$t_f = A e^{E_A/kT}$$

 \mathbf{t}_{f} : time to fail **A**: acceleration factor \mathbf{E}_{A} : activation energy; **T**: temperature **k**: Boltzmann's constant

• This covers many failure modes of electronics but not, for example, failures causes by mechanical fatigue

Temperature, Test Time Relationship During Endurance Testing

Stress Test Time $\propto \frac{1}{Stress Temperature}$

JEDEC Standard 218 uses the Arrhenius Equation in this form for calculations of temperature-accelerated stress times:

 $t_{S}[FH_{S}Ae^{E_{A}/kT_{S.H}} + (1 - FH_{S})Ae^{E_{A}/kT_{S.L}}]$ $\leq t_{U}[FH_{U}Ae^{E_{A}/kT_{U.H}} + (1 - FH_{U})Ae^{E_{A}/kT_{U.L}}]$

From JESD218A Annex B assumes no added delays

Or to show the stress test time:

$$t_{S} \leq t_{U} \frac{FH_{U}Ae^{E_{A}/kT}U.H + (1 - FH_{U})Ae^{E_{A}/kT}U.L}{FH_{S}Ae^{E_{A}/kT}S.H + (1 - FH_{S})Ae^{E_{A}/kT}S.L}$$

$$A = \text{constant scaling factor (this drops out of the calculations)} \\ t = \text{time (in any units as long as all t values are in the same units)} \\ T = \text{Température in } ^{\circ}K \\ E_{A} = \text{Activation energy, assumed to be 1.1 eV} \\ K = \text{Boltzmann's constant, 8.6171·10-5 eV/}^{\circ}K \\ FH = \text{Fraction of time spent at high temperature} \\ s = \text{Subscript denoting the use condition (enterprise vs. client)} \\ H = \text{Subscript denoting the low temperature of interest} \\ L = \text{Subscript denoting the low temperature of interest} \\ CMANTEST$$

Factors Affecting Thermal Consistency in Multiple DUT Chamber

- Chamber Performance Factors
 - Total air flow and temperature
 - Air guides and baffles
 - DUT count, locations, and spacing
- DUT power consumption
 - Power generated = heat; heat must be removed
 - Worst case is with all DUTs at full power
 - New PCIe 3.0 DUTs can be 25W compared to <10W for SATA

Multi-DUT Chamber Considerations DUT Spacing

- DUTs positioning perpendicular to airflow
 - Too close: thermal disturbance between DUTs
 - Too far apart: more expensive (floorspace)
 - Need to balance spacing with airflow and air temperature
- DUT positioning inline with air flow
 - A gradient in temperature will occur
 - Need to balance airflow and number of DUTs in series

= 1 DUT

Air Flow / temperature gradient

Multi-DUT Chamber Considerations Vertical Positioning

- Airflow loops through chamber to the compressor
- Baffles are needed to guide air into the chamber evenly
- Here is one scenario for 25W DUTs to meet ±5oC
 - 4 levels per chamber
 - 8 DUTs deep
 - 4 DUTs long
- Note: two chambers per 256 DUT system

Poor baffling or too many vertical layers in a single chamber causes vertical temperature gradient

Multi-DUT Thermal Chamber Design

- Air flow is complex,
 - Sophisticated simulation, including baffles and DUT form factors is necessary to aid chamber design including baffles and DUT form factors

Thermal chamber airflow simulation

DUT Power Sensitivity

DUT Power vs. Thermal Consistency

- 256 @0W +/-1.1C
- 128 @10W +/- 1.5C
- 256 @12W +/- 3.6C
- 256 @25W +/- 5.0C

Set point does not affect consistency (in operating range)

Set point is air temp, device temp is much higher

Production Test

- Bathtub curve
- Need to reach a minimum threshold temp to trigger an infant failures
- Lower temp may allow escapes
- Higher temp may cause yield hit, depending on device resilience

- Therefore
 - Meeting a minimum temperature is required
 - Thermal consistency is an economic question: cost of thermal control/ floor space, etc.
 - Large chambers may prove impractical

Production Test Approach

- As production volumes increase, floor space becomes a constraining factor
- Lowest floorspace approach:
 - use ambient air
 - Force air over only 1 or 2 DUTs in parallel
 - Isolate slots with air baffles
 - Used closed-loop control of fan speed

All Rights Reserved - ADVANTEST CORPORATION

Closed-loop Ambient Thermal Control

Summary

- Endurance test requires both thermal accuracy and consistency
 - A chamber with active cooling is most cost effective
- Production test most critical specification is to meet the minimum high temperature
 - Optimal cost can be achieved with high-density, floorspace-saving ambient air solution with closed-loop thermal control

ADVA

Overall Summary

- 3 advanced technologies have been presented for characterization, diagnostics, and verification of IC devices
 - Terahertz wave used in mold thickness metrology
 - Electro-optical pulsed TDR for fault isolation/analysis
 - Thermal analysis-designed System Level Endurance and Production Test

Thank you for your attention!

And thanks for contributions in learning to various organizations and individuals, including:

Intel Micron AMD Xilinx Sandisk Qualcomm Texas Instruments Broadcom

A. Irisawa Y. Kobayashi R. McKay M. Xie T. Hemachandar A. Hooper

And many others

