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I. INTRODUCTION

Applying reinforcement learning (RL) to robotics is noto-
riously hard due to the curse of dimensionality [1]. Robots
operate in continuous state-action spaces and visiting every
state quickly becomes infeasible. Therefore, function approx-
imation has become essential to limit the number of param-
eters that need to be learned. Policy search methods, that
employ pre-structured parameterized policies to deal with
continuous action spaces, have been successfully applied
in robotics [2]. These methods include policy gradient [3],
[4], natural policy gradient [5], expectation maximization
(EM) policy search [6], [7], and information theoretic ap-
proaches [8].

A common feature of the aforementioned policy search
methods is that they all aim to maximize the expected reward.
Therefore, they do not take into account the variability and
uncertainty of the performance measure. However, robotic
systems need to act in stochastic, non-stationary, partially
observable environments. To account for these challenges,
the objective function should include some variance related
criteria in addition to the standard expected reward maxi-
mization objective.

II. RISK SENSITIVE POLICY SEARCH

In the recent years, there have been some advances in
risk-sensitive policy search using policy gradients. In [14], a
policy gradient algorithm was developed that accounted for
the variance in the objective either through a penalty or as
a constraint. The Conditional value at risk (CVaR) criterion
was combined with policy gradients in [15], [16]. In this
paper, we study properties of policy gradient methods with
the entropic risk measure [9] in the objective, defined as
follows

Jrisk(R) =−
1
γ

logE[exp(−γR)], (1)

where the risk-sensitivity depends on γ . Positive γ > 0 result
in pessimistic, risk-averse behavior, while γ < 0 favors high-
variance rewards and is called risk-seeking.

To introduce risk-sensitivity into policy search, we propose
to optimize the entropic risk-measure (1) instead of optimiz-
ing for average performance. Rewriting it for the parameters
ω of an upper-level policy πω (θ) = π(θ |ω) yields

Jγ(ω) =−1
γ

logEθ∼πω
[exp(−γR(θ))]. (2)

As the name suggests [2], policy gradient methods aim
to maximize the objective J(ω) by gradient ascent on the
policy parameters.

The likelihood ratio trick is commonly invoked to derive
an estimate of the gradient. For the risk-sensitive objec-
tive (2), the likelihood ratio gradient yields

∇Jγ = Eθ∼πω

[
∇ logπω (θ)

{
−1

γ
e−γ(R(θ)−ψγ (πω ))

}]
, (3)

where ψγ(πω ) = −γ−1 logEπω
[exp(−γR)] is the log-

partition function [21].
The first point to make about (3) is the relation between the

risk-sensitive policy gradient and the standard, risk-neutral
one. Observe from (2) that the risk-sensitive objective Jγ(ω)
becomes risk-neutral for γ → 0. Surprisingly, however, the
gradient of the risk-sensitive objective does not correspond
to the vanilla policy gradient (PG) ∇J = E[∇ logπ ·R] but
instead to the PG with an average reward baseline

∇Jγ −−→
γ→0

E[∇ logπ · (R−E[R])]. (4)

The log-partition function ψγ(πω ) plays the role of the risk-
sensitive baseline, since ψγ → E[R] for γ → 0. Therefore,
risk-sensitive PG (3) automatically has lower variance com-
pared to vanilla PG due to the presence of the baseline.

Furthermore, we can view (3) as a risk-neutral PG for
an exponentially transformed reward function given by the
expression in curly braces in (3). Therefore, along with the
multiplicative baseline ψγ(ω), the usual additive baseline can
also be subtracted to further reduce variance. Moreover, stan-
dard algorithms, such as natural policy gradient (NPG) [5]
and proximal policy optimization (PPO) [22], can be directly
applied to optimize the risk-sensitive objective (2) thanks to
the form (3) of the risk-sensitive policy gradient.

It turns out, another important property of the gradient
estimator (3) can be revealed by recognizing it as the gradient
of the maximum likelihood policy update in Relative entropy
policy search (REPS) [8]. REPS belongs to the category
of information-theoretic policy search approaches [2]. This
class of methods follows the idea of limiting the loss of
information in-between policy updates.

There exists a closed form solution to the optimization
problem of REPS that can be estimated by samples [8].
Fitting a parametric policy πω (θ) to the said solution by
moment projection [2] yields

maximize
ω

Eθ∼q

[
logπω (θ)exp

(
R(θ)−ψ−1/η(q)

η

)]
,

(5)
where η is a Lagrangian multiplier which corresponds to the
bound of information loss between policy updates and θ is
sampled from the distribution q.



The correspondence between the gradient of (5) and (3)
is established by identifying γ = −1/η . Thus, the policy
update of REPS (5) can be identified with the risk-sensitive
update (3) under the assumption that the information loss
bound is small, such that q ≈ πω and one step in the
direction of the gradient solves (5). Importantly, though, the
temperature parameter η = −1/γ gets optimized in REPS
and thus changes with iterations, whereas when applying (3),
it has to be scheduled manually.

Another interesting distinction between risk-sensitive opti-
mization and REPS stems from the fact that the temperature
parameter η must be positive in REPS. This means γ < 0,
or risk-seeking optimization. Thus, REPS is risk-seeking by
construction, unlike the risk-sensitive PG (3) which can also
be risk-averse.

III. EXPERIMENTS

To analyze the properties of the risk-sensitive policy gradi-
ent algorithm, we first consider a prototypical risk-sensitive
portfolio optimization problem to establish the validity of our
approach, then we proceed to apply the risk-sensitive policy
gradient method to a toy robot badminton setup, and finally,
we report the results obtained by applying the algorithm to
a real-robot task of learning to return a shuttlecock in the
game of badminton with the Barrett WAM robot.

A basic problem of portfolio optimization [27] consists
of an individual who wants to invest a unit of capital in N
assets with the goal of making profit. The distribution of
capital over assets x is called portfolio. Returns of various
assets are random variables and assumed to be Gaussian
distributed, r ∼N (µr,Σr). Then, return of a portfolio x is
a random variable R∼N (µT

r x,xTΣrx). Returns with a high
expected value are accompanied with higher risks, whereas
lower risk returns yield lower but more consistent reward.
When comparing two policies π1 and π2 corresponding to
risk factors γ1 > γ2, policy π1 will prefer lower risk assets
and yield lower return on average than π2. Results obtained
by our risk sensitive policy gradient algorithm can confirm
the theory and imply that our algorithm works as intended.

Next, we considered a simplified scenario of a robot
learning to return a shuttlecock in the game of badminton.
We assume a two dimensional world and a ball following
a parabolic flight trajectory. The goal is to determine the
hitting velocity of the racket which results in the ball arriving
at a desired target location. The hypothesis is that for
different values of the risk-aversion factor γ , the agent will
learn different strategies: either aggressive hits but with high
variability, or safe returns however with smaller expected
reward. The problem is specified as follows

minimize
ω

1
γ

logE [exp(γ|xdes− x1(vx,0 vy,0)|)] (6)

The final shuttlecock position x1 is constrained by the
equations of motion. We treat the initial ball velocity as the
control variable and add a bit of noise, such that (vx,0 vy,0) =
v0 ∼N (u,Σv0). As usually, we employ a Gaussian policy
u∼ πω (u) = N (u|µu,Σu).

We evaluate the problem using the risk-sensitive policy
gradient for various values of γ . The central observation was
that both risk-seeking and risk-averse policies corresponding
to extreme values of γ fail at returning the ball to the desired
target. This effect is due to the dual nature of the objective
function which trades mean performance against variability.
Extreme risk-averse policies tend to undershoot the target,
while extreme risk-seeking ones tend to overshoot it. The
same conclusion can be made based on obtained initial
velocities. Risk-averse, pessimistic policies favor smaller
initial velocities. In contrast, risk-seeking, optimistic policies
chose larger initial velocities. Further, we examined that large
negative values of γ negatively affect optimization, due to
objective (6) becoming very sharp, close to a delta function.

Finally we apply our algorithm to a real-robot badminton
task. Unfortunately, with our current setup, we were not
able to achieve the goal of training robot-badminton skills
of varying degree of riskiness, due to hardware constraints.
Returning a shuttlecock in badminton to a desired location
requires a high degree of precision. In our experiments, we
had to relax this requirement and only optimize for returning
the shuttlecock at all. To test the limits of achievable perfor-
mance in the badminton task, we carried out an extended
learning trial in which 800 iterations of policy improvement
were performed with 100 roll-outs per iteration. The best
risk-neutral controller could return 95% of the served balls.
An example successful hitting movement is shown in Fig. 1.

IV. CONCLUSION

The entropic risk measure was considered as the opti-
mization objective for policy gradient methods. By analyzing
the exact form of its gradient, we found that it is related
to the standard policy gradient but inherently incorporates
a baseline. Furthermore, risk-sensitive policy update was
shown to correspond to a certain limiting case of the policy
update in REPS. Exploring this connection to information-
theoretic methods appears to be a fruitful direction for
future work. Entanglement between exploration variance
and inherent system variability was found to be a strong
limiting factor. Approaches for separating these two sources
of uncertainty need to be searched for.

To reveal strengths and weaknesses of risk-sensitive op-
timization in a real robotic context, we applied our policy
gradient method to the problem of learning risk-sensitive
movement primitives in a badminton task. In a simplified
model, we observed that policies optimized for different
values of risk aversion demonstrate qualitatively different
behaviors. Namely, risk-averse policies hit the shuttlecock
with smaller velocity and tended to undershoot, whereas
risk-seeking policies favored higher velocities and typically
overshot the target. Finally, we carried out experiments on
the real robot, which showed that moderate values of risk
aversion can help finding better solutions for the original,
risk-neutral problem. However, our attempt at learning risk-
sensitive movement primitives on the real robot had limited
success due to limitations of the hardware platform and the
entanglement of sources of variability.
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Fig. 1: Phases of the hitting movement of the Barrett WAM.
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[8] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search.”
in AAAI. Atlanta, 2010, pp. 1607–1612.
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