
1 

Beyond SBOMs: providing strong security guarantees for future 
software supply chains using in-toto 

Standards and Guidelines to Enhance Software Supply Chain Security 

(Position statement for the “Guidelines for software integrity chains and provenance” Area) 

Santiago Torres-Arias 
Department of Electrical and Computer Engineering, Purdue University 

santiagotorres@purdue.edu 

May 27, 2021 

Introduction 

Modern software is built through a complex series of steps called a software supply chain. These steps are performed 
as the software is written, tested, built, packaged, localized, obfuscated, optimized, and distributed. In a typical 
software supply chain, these steps are “chained” together to transform (e.g., compilation) or verify the state (e.g., 
the code quality) of the project in order to drive it into a delivered product, i.e., the finished software that will be 
installed on a device. Usually, the software supply chain starts with the inclusion of code and other assets (icons, 
documentation, etc.) in a version control system. The software supply chain ends with the creation, testing and 
distribution of a delivered product. 

Securing the supply chain is crucial to the overall security of a software product. An attacker who is able 
to control any step in this chain may be able to modify its output for malicious reasons that can range from 
introducing backdoors in the source code to including vulnerable libraries in the delivered product. Hence, attacks 
on the software supply chain are an impactful mechanism for an attacker to affect many users at once. Moreover, 
attacks against steps of the software supply chain are difficult to identify, as they misuse processes that are normally 
trusted. 

Unfortunately, such attacks are common occurrences, have high impact, and have experienced a spike in recent 
years. Attackers have been able to infiltrate version control systems, including getting commit access to the Linux 
kernel, stealing Google’s search engine code, and putting a backdoor in Juniper routers. Furthermore, attackers 
have used software updaters to launch attacks, with Microsoft, Adobe, Google, and Linux distributions all showing 
history of compromise. Perhaps most troubling are several attacks in which nation states, such as Iran, North 
Korea, China and Ukraine, have used software supply chain compromises to target their own citizens and political 
enemies. This troubling trend of course culminated with the SolarWinds compromise, that has affected critical 
organizations within the US government. 

Currently, supply chain security strategies are limited to securing each individual step within it. For example, 
Git commit signing controls which developers can modify a repository, reproducible builds enables multiple parties 
to build software from source and verify they received the same result, and there are a myriad of security systems 
that protect software delivery. These building blocks help to secure an individual step in the process. 

Although the security of each individual step is critical, such efforts can be undone if attackers can modify the 
output of a step before it is fed to the next one in the chain. These piecemeal measures by themselves can not 
stop malicious actors because there is no mechanism to verify that: 1) the correct steps were followed and 2) that 
tampering did not occur in between steps. For example a web server compromise was enough to allow hackers 
to redirect user downloads to a modified Linux Mint disk image, even though every single package in the image 
was signed and the image checksums on the site did not match. Though this was a trivial compromise, it allowed 
attackers to build a hundred-host botnet in a couple of hours due to the lack of verification on the tampered image. 
While Software Bills of Materials (SBOMs) provide a unique property of software transparency, they fall short 
without adequate supply chain integrity mechanisms in place. 

As such, further mechanisms are required in order to ensure the correct application of software supply chain 
policies at both , the individual step level (i.e., an operation within the supply chain) and at the inter-step level 
(i.e., as software artifacts flow throughout the chain, from one step to another), is crucial to prevent further software 
supply chain compromises. This is why we designed in-toto to provide these properties throughout various software 
supply chains. in-toto is currently used throughout various ecosystems, and various software vendors to protect 
thousands of companies and millions of users. 

1 

mailto:santiagotorres@purdue.edu


2 Guidelines for software integrity chains and provenance 

As outlined in the Executive Order Sections 4(e)(ii, and vi), a need of evidence of conformance to processes as well 
as the ability to evaluate security policies regarding software development are crucial to improve software supply 
chain security. To build a secure software supply chain that can combat the aforementioned threats, we envision 
that the following security goals would need to be achieved. 

Property 1: Supply Chain Layout Integrity This property requires that all of the steps defined in a supply 
chain are performed in the specified order. This means that no steps can be added or removed, and no steps can be 
reordered. This tightly relates to the necessity of communicating software supply chain processes information in a 
trustworthy fashion to consumers of software. In in-toto, this is achieved throughout a software supply chain policy 
file (also called an in-toto layout). This way, an authoritative source (such as a government agency) can stipulate 
the expected processes to be carried out. Further, policies are cryptographically signed to ensure authenticity. 

Property 2: Step Authentication To 
provide Step Authentication, we require 
that steps can only be performed by the 
intended parties. No party can perform a 
step unless it is given explicit permission to 
do so. Further, no delivered products can 
be released unless all steps have been per-
formed by the right party (e.g., no releases 
can be made without a signoff by a release 
engineer, which would stop accidental de-
velopment releases). This requirement is 
crucial and goes beyond a regular Software 
Bill of Materials, as it dis-aggregates trust 
to different software information providers. 
In other words, this allows for actors within 
a supply chain to provide information about 
parts of the process they are trusted to carry out. 

Property 3: Artifact-Flow Integrity All of the software artifacts (e.g., binaries, source code, OS images) 
created, transformed, and used by steps must not be altered in-between steps. This means that, as shown in 
Figure 1 if step develop creates a file setup.py and step CI/CD uses it, step CI/CD must use the exact file 
setup.py created by step develop. It must not use, for example, an earlier version of the file created in a prior run. 
By providing Artifact-Flow Integrity, we are better able to provenance information that goes beyond the source of 
a software artifact, but also its contents, which version, and more. 

Artifact flow integrity is preserved by collecting evidence in in-toto in the shape of link metadata, which are 
signed attestations created by actors in the software supply chain. These attestations collect information as the 
step in the supply chain is carried out so as to show that it was carried out properly. Finally, the attestation is also 
signed to allow for non-repudiation and authentication of the information provided (the latter also being necessary 
to ensure step authentication). 

2.1 Providing Mechanisms to Ensure These Properties 

We designed in-toto to provide these properties and accommodate current software development practices. To use 
in-toto, you can enable features on multiple off-the-shelf tools (e.g., via a Jenkins plugin or Tekton) to generate 
and verify evidence of software supply chain compliance. In principle, in-toto is a series of tools, and a document 
formats to enable actors in the supply chain to exchange software supply chain information (e.g., SBOMs) and to 
validate that the internal properties of the evidence provided. 

3 Conclusion 

We presented a series of security properties of paramount importance to improve the security of software supply 
chains. Although we believe that any tool that provides the previously-mentioned properties will fit the bill, in-toto 
is the first tool to do so. Further, as a thriving open source software community around this topic area, it serves 
as a hub for multiple existing players to exchange ideas and extensions to the original design. We invite interested 
parties to read more about in-toto on https://in-toto.io. 

Figure 1: The in-toto deployment at Datadog to provide a their “tamper evident 
CI/CD system” 

2 

https://in-toto.io
https://setup.py
https://setup.py

