
Applying Formal Methods to Secure the Software Supply Chain 

Philip Johnson-Freyd∗and Jon Aytac†and Geoffrey Hulette‡ 

May 26, 2021 

Response to bullet 3: Initial list of secure software development lifecycle standards, best practices, and 
other guidelines acceptable for the development of software for purchase by the federal government. This list 
of standards shall include criteria and required information for attestation of conformity by developers and 
suppliers. See EO Section 4(e)(i, ii, ix, and x). 

Formal methods-based static analyses of program source code are able to provide a very high level of 
assurance that a software program meets critical safety and security requirements. In particular, formal 
methods can detect errors and vulnerabilities that traditional verification techniques (e.g., testing or linting) 
alone will not [9]. 

Testing can determine only how a software program behaves on certain given inputs. For nontrivial 
programs, testing each and every possible input is usually infeasible because the number of potential inputs 
is very large. Therefore, although testing may find unsafe or insecure program behaviors, it cannot rule 
them out. Linting techniques analyze the program text (i.e., source code) and are useful for drawing a 
programmer’s attention to likely problems therein but, like testing, linting cannot rule out errors or security 
violations. 

Formal methods, like linting, work by analyzing program source code. Unlike linting, formal methods 
consider program semantics in order to prove, in the sense that one proves a mathematical theorem, that 
given semantic properties are met. Properties that can be checked include so-called “safety properties,” such 
as the absence of runtime errors (e.g., dereferencing an invalid memory address or executing a division by 
zero) [4]. Properties may also express invulnerability to a class of exploits [5, 3]. Furthermore, properties 
can be combined to express complex notions of full system correctness. 

Formal methods have been shown to be effective at detecting security vulnerabilities in practice [5]. At 
Sandia we have observed that the process of formal analysis can increase safety and reliability of the resulting 
system beyond even what is explicitly specified. For instance, VST [1] detects common sources of security 
vulnerabilities in C code, such as undefined behavior and runtime crashes, whether explicitly specified or 
not. Similarly, “lightweight” formal methods, such as strong type systems and model checking at the design 
level, reduce bugs in practice [6]. 

However, the greatest potential benefit of formal methods will be facilitating use of a Trusted Computing 
Base (TCB) [3] as a foundation for security. In this scheme, formal methods are used to prove that a given 
program is secure, obviating the need to trust it so long as its specification, as well as the tools necessary to 
check its specification, are available and trusted. Variations on this idea, such as proof carrying code [10], 
suggest an approach to software security based on the principle of minimizing the need for trust. 

Proof assistants based on the de Bruijn criterion [2, 11] feature a small, simple proof checking kernel 
that is independent from the complex facilities for finding proofs. Because the kernel is so small it can be 
subjected to extensive human-audited trust evaluation, and used as the foundation of the TCB, minimizing 
the critical surface area of the overall system. Methods based on foundational proof assistants satisfying this 
criterion should therefore be preferred whenever possible. 

For software to be trusted, its entire development toolchain must be considered. Even if source code is 
correct, compilers, assemblers, and linkers may potentially introduce vulnerabilities and so must be trusted. 
Compilers such as CompCert [8] and CakeML [7] are themselves proven correct in foundational proof assis-
tants and thus can be removed from the TCB. However, gaps remain. The compilers themselves must be 

∗pajohn@sandia.gov 
†jmaytac@sandia.gov 
‡ghulett@sandia.gov 

1 

mailto:pajohn@sandia.gov
mailto:jmaytac@sandia.gov
mailto:ghulett@sandia.gov


compiled, as must the proof assistant, so trusted “extraction” mechanisms are needed. Even with such tools, 
the classic problem of “trusting trust” [12] (that the verified compiler was derived via a compilation chain 
from an unverified one) is still a point of concern. To mitigate this issue we advocate the use of multiple 
independent implementations of the proof checking kernel and whatever other minimal machinery is needed 
to bootstrap a verified software toolchain. 

Ultimately, formal methods-based verification, including of development tools, and based on a minimal 
trusted computing base, provides the highest possible level of assurance for software. As such, it should 
be considered the gold standard and the goal for all high consequence systems. For the most safety- and 
security-critical software, resources should be deployed towards building more complete formal methods-
based verification stacks, more trustworthy formal methods tools, and ever smaller Trusted Computing 
Bases. 

Authors 

Philip Johnson-Freyd Jon Aytac Geoffrey Hulette 
Senior Member of Technical Staff Senior Member of Technical Staff Principal Member of Technical Staff 

Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories 

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engi-
neering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department 
of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objec-
tive technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not 
necessarily represent the views of the U.S. Department of Energy or the United States Government. 
SAND2021-6433 O 

References 
[1] Andrew W. Appel. Verified software toolchain. In Proceedings of the 20th European Conference on Program-

ming Languages and Systems: Part of the Joint European Conferences on Theory and Practice of Software, 
ESOP’11/ETAPS’11, page 1–17, Berlin, Heidelberg, 2011. Springer-Verlag. 

[2] Henk Barendregt and Erik Barendsen. Autarkic computations in formal proofs. Journal of Automated Reasoning, 
28(3):321–336, 2002. 

[3] Giampaolo Bella. Formal correctness of security protocols. Springer Science & Business Media, 2007. 
[4] Patrick Cousot. Proving the absence of run-time errors in safety-critical avionics code. In Proceedings of the 7th 

ACM & IEEE international conference on Embedded software, pages 7–9, 2007. 
[5] Kathleen Fisher, John Launchbury, and Raymond Richards. The HACMS program: Using formal methods 

to eliminate exploitable bugs. Philosophical Transactions of The Royal Society A Mathematical Physical and 
Engineering Sciences, 375:20150401, 10 2017. 

[6] Daniel Jackson. Lightweight formal methods. In José Nuno Oliveira and Pamela Zave, editors, FME 2001: Formal 
Methods for Increasing Software Productivity, pages 1–1, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. 

[7] Ramana Kumar, Magnus O Myreen, Michael Norrish, and Scott Owens. CakeML: a verified implementation of 
ML. ACM SIGPLAN Notices, 49(1):179–191, 2014. 

[8] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand. 
Compcert - a formally verified optimizing compiler. In ERTS 2016: Embedded Real Time Software and Systems, 
8th European Congress, 2016. 

[9] Jackson R. Mayo, Robert C. Armstrong, and Geoffrey C. Hulette. Digital system robustness via design con-
straints: The lesson of formal methods. In 2015 Annual IEEE Systems Conference (SysCon) Proceedings, pages 
109–114, 2015. 

[10] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on 
Principles of Programming Languages, POPL ’97, page 106–119, New York, NY, USA, 1997. Association for 
Computing Machinery. 

[11] Martijn Oostdijk and Herman Geuvers. Proof by computation in the Coq system. Theoretical Computer Science, 
272(1-2):293–314, 2002. 

[12] Ken Thompson. Reflections on trusting trust. In ACM Turing award lectures, page 1983. ACM, 2007. 

2 




