
Approved for Public Release

1

Raytheon Technologies Position Paper (item 4) on
Standards and Guidelines to Enhance Software Supply

Chain Security

May 26, 2021

Authors
Primary: Randall Brooks (Principal Engineering Fellow, Raytheon Intelligence and Space)

Secondary: Kelly FitzGerald (Associate Director and Architect, CODE Center Product Security Architecture and Risk
Evaluation, Raytheon Intelligence & Space)

Contributors: Edward Bonver (Director, Product Security Architecture and Risk Evaluation for CODE Center, Raytheon
Intelligence & Space); Fred Jones (Munitions Cyber Research & Development Principal Investigator, Raytheon Missiles &
Defense); Jay Lala (Senior Principal Engineering Fellow at Raytheon Technologies, Product Cybersecurity Officer (PCO),
Raytheon Missiles and Defense); William Lamberti (Director, Software & Product Intelligence, Pratt & Whitney); Bret
Lynch (Manager, Software & Product Intelligence, Pratt & Whitney); Anne Murray (Director of Cyber & Secure Systems,
Raytheon Intelligence & Space); Linda Peyton (Senior Director of Engineering Infrastructure & Integrity, Collins
Aerospace); Gregory Ritter (Engineering Fellow; Raytheon Intelligence & Space); Stuart Schwartz (Principal Security
Engineer, CODE Center Product Security Architecture and Risk Evaluation, Raytheon Intelligence & Space); Harold
Toomey (Associate Director, CODE Center Product Security Architecture and Risk Evaluation, Raytheon Intelligence &
Space)

This document does not contain technology or technical data controlled under either the U.S. International Traffic
in Arms Regulations or the U.S. Export Administration Regulations.

mailto:Randall.S.Brooks@rtx.com
mailto:Kelly.FitzGerald@rtx.com
mailto:edward.bonver@rtx.com
mailto:fkjones@raytheon.com
mailto:jay_lala@raytheon.com
mailto:william.lamberti@prattwhitney.com
mailto:bret.lynch@prattwhitney.com
mailto:bret.lynch@prattwhitney.com
mailto:Anne.M.Murray@rtx.com
mailto:GJRitter@rtx.com
mailto:stuart.schwartz@rtx.com
mailto:harold.toomey@rtx.com
mailto:harold.toomey@rtx.com

Approved for Public Release

2

Overview

This position paper is to address NIST’s request for:

This paper focuses on covering the initial minimum requirements for testing software with consideration for the process
of developing secure software (referred to as Software Assurance or Application Security). This testing includes the
source code, as specified, and includes the compiled binary and its execution.

When looking at the minimum requirements for testing, one must first look at current practices that are being utilized in
the industry to find vulnerabilities. These practices are Static Application Security Testing (SAST), Dynamic Application
Security Testing (DAST), Interactive Application Security Testing (IAST), Cognative Assistance and Visualization, and
Automation.

SAST

The minimum requirements should include static code analysis (SCA) checking for the Common Weakness Enumerations
(CWEs) via automated tooling and manual processes. The minimum should include checking for the most common CWEs
with the understanding that no single tool will find all CWEs (e.g. CWE Top 25). This is because each tool has its own
bias, approach and techniques, which means the strongest approach is a garden of tools, not a monoculture of a single
tool. It should also find and deny the use of any deprecated functions to protect the software from potential harm.

Static analysis tools must have CWE checkers on by default as a simple out of the box scan will not yield any
Cybersecurity relevant findings. A stretch goal should consider the use of multiple static analysis tools, such as what is
done in the formally DHS-funded Software Assurance Marketplace (SWAMP). Additionally, we would like to see a sense
of determining one’s own “Top 25” as Web software is different than application or embedded software. Static analysis
should include documented peer reviews as no single tool can determine the intention of the developer.

At a minimum deja vmpedigree and provenance of the application scanning should be performed to find any Free and
open-source software (FOSS) components the application is using that have vulnerabilities that are publicly disclosed in
the Common Vulnerabilities and Exposures (CVE) database. When a new vulnerability is publicly disclosed then the
project owner can be notified so the vulnerable FOSS component can be updated. This will help prevent situations such
as Equifax where their system was compromised due to a vulnerable FOSS component.

Beyond SAST of source code, the minimum requirements should include an analysis of the compiled binary through
reverse engineering. Tools like IDA-pro, Ghidra, Binary Ninja, etc. can expand code coverage and include aspects of
Cyber Supply Chain Risk Management (C-SCRM). Code integrated through standard development process includes code
that becomes a part of one’s product through static and dynamic linked libraries. These tools should be required to look
for “back doors” or built-in credentials in these libraries.

DAST

As SAST analysis will help by finding CWEs, to determine if the CWEs are potentially exploitable, testing running code
should be a minimal requirement. DAST should include nominal and off nominal testing. The code should be stressed by
DAST for items likely memory leaks and denial of service. DAST testing should test for how memory is utilized and
whether it is properly handled. Fuzz testing should be applied to all interfaces as determined by an attack surface
analysis of a Threat Model. Fuzz testing can be done on defined protocols or the more common methodology of custom
protocols for the product being developed. An important metric to determine is the duration of time DAST must be
conducted (to include IAST). The longer the testing is done; the more code will be exercised. DAST can have the sense of
diminishing rate of returns when the same style of approach of testing is repeatedly done (i.e. fuzz testing exercised with
the same data set). For those projects utilizing agile methods, an additional sprint should be allocated to DAST testing.

4. Initial minimum requirements for testing software source code including defining types of
manual or automated testing (such as code review tools, static and dynamic analysis, software
composition tools, and penetration testing), their recommended uses, best practices, and setting
realistic expectations for security benefits. See EO Sections 4(e)(iv and v) and 4(r).

Approved for Public Release

3

Penetration testing is another form of dynamically running the code. The focus of penetration testing should be 3rd
party testing, which is covered later.

IAST

IAST extends the minimum requirements of DAST by adding instrumentation. This instrumentation should be able to tell
if an input can have direct control on execution. Thus all processor registers should be able to be read to determine if
the DAST testing yields a read or write to the heap or stack or even a registry, data store / file system, etc. This can be
done in a debug state or instrumented virtual systems. Testing tools that can run DAST testing such as an instrumented
virtual machine provide the benefit of recording a history of execution to understand why a crash occurred. This type of
testing should be considered as a stretch goal with general debugging capabilities as a required minimum.

Cognitive Assistance and Visualization

As a best practice, human-based analysis of software systems will continue to be an important part of software risk
mitigation going forward. This human-in-the-loop analysis requires technical support to be effective and efficient.
Software visualization and cognitive assistance technologies enable quicker, deeper understanding of software design
intent and the motivations behind implementation decisions. Software visualization should support understanding of the
existing source code as well as its evolution though analysis of configuration management data. The ideal software
visualization tool will provide context to software changes and support quantitative software risk analysis.

Automation

It should be a goal in every Cybersecurity-focused project to get the “Security” out of the way. For terms like DevSecOps,
the focus should be Dev and Ops with Cybersecurity built into the process. This can be done through automation. SAST,
DAST and IAST should be automated as much as possible to remove human error. However, automation is not the only
answer. Bug bars should be set, and code can be tested through its lifecycle pushing towards operation of said code. If
the code fails the bug bars, feedback must be given to the developers. This will likely yield additional manual tests.

Conclusion

Additionally, this position paper must state that tools such as Nessus, Metasploit, etc. are targeted for known
vulnerabilities. The testing of software should be focused on finding the unknown vulnerabilities. These tools should be
considered as optional. They cover penetration testing or vulnerability assessment of a system but will not provide any
benefit over the testing outlined above. 3rd Party testing will provide a greater benefit. Developers can sometimes not
see the issues they are faced with. If they are the ones testing the software, they will likely be too closely coupled to the
functionality of the code and not have a “Think Evil” mentality on their own system. At a minimum either SAST, DAST or
IAST should be done by a 3rd party who focuses on vulnerability research. We would recommend this for SAST as that
tends to happen earlier in the lifecycle. A stretch goal would include DAST or IAST when the software system is
complete.

A simple statement with regards to testing is that the last time one has full control of their software is the last day they
test and ship. An attacker is not limited by a deadline. In the end no amount of testing will find all bugs and even
architectural flaws pose other risk. Setting a minimum set will greatly improve what is done today.

