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The EO envisions – among other mechanisms and policies – the creation of Software Bill of 
Material (SBOM) frameworks that constitute (according to the glossary in Sec. 10(j)) a ...formal 
record containing the details and supply chain relationships of various components used in building 
software. According to the description in Sec. 4(e), these SBOMs are expected to contain not only 
accurate and up-to-date provenance information of components, but evidence of audits and analyses 
pertaining to vulnerabilities, ascertain conformity with secure software development practices and 
disclosure policies, and are provided to a purchaser directly or by publishing it on a public website. 

These requirements cover provenance (chain of custody) and pedigree (history of how it was 
produced) of software1 . Both aspects are administrative and can be captured by metadata, certified 
using cryptographic means. Indeed Blockchain technologies are finding rapid deployment to trace 
production histories and logistics chains in BOMs for physical goods. However, earlier in Section 4, 
the EO states The development of commercial software often lacks transparency, sufficient focus on 
the ability of the software to resist attack, and adequate controls to prevent tampering by malicious 
actors. There is a pressing need to implement more rigorous and predictable mechanisms for ensuring 
that products function securely, and as intended. Thus, the overall goal includes expectations that 
concern functionality – an inherent property whose satisfaction is independent of how the code was 
obtained or produced and can thus not be (purely) covered by metadata. 

Extending administrative SBOMs with additional information (including evidence pertaining to 
code-inherent properties) appears beneficial along at least the following axes: 

architectural information: improving on linear catalogs of (software) ingredients, current SBOMs 
already recognize the nested structure of software by supporting or envisioning tree-shaped or 
otherwise hierarchically structured relationships between software elements. Taking this one 
step further, we argue that such structure be extended to capture architectural arrangements 
as modeled by languages such as AADL [8], and that additional glue code that schedules execu-
tion, reformats data streams, or otherwise orchestrates invocation of individual components be 
included. Indeed, in the age of agile methods, software is routinely obtained not de nuovo but 
composed from existing packages, libraries, or microservices. Knowing in which manner a large 
system relies on a potentially compromised component is as important as knowing whether the 
component is used at all. Furthermore, the gluecode itself may contains vulnerabilities. 

deployment constraints: in addition to routine metadata, a system’s SBOM entry should include 
any information that is necessary to deploy the software and reproduce it: libraries, OS-version, 
compilers (with invocation flags), and potentially processor information or hardware configura-
tions. These pieces of information are routinely maintained in build scripts, package managers, 
CI pipeline configurations, or middleware orchestrations. To increase the precision, coarse-grain 
version numbers should ideally be replaced by (hashes of) specific commits in code repositories. 
Ultimately, we note that each ingredient itself constitutes an SBOM entry: for example, a com-
promised compiler affects potentially any component it has been deployed on. Hence, SBOM 
frameworks must naturally be higher-order, and containment information must be efficiently 
searchable in both direction (contains/uses versus is-contained-in/is-used-by). 

1Our use of the words provenance and pedigree follows Robert A. Martin’s slides [12]. 
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validation information: evidence about testing procedures (including test vectors, compiler flags, 
parameter seeds or anything else that’s needed to reliably reproduce results), vulnerability 
detection tools (with links to the exact set of virus signatures used), assessment tools regard-
ing adherence to coding guidelines, and other static analyses need to be included for each 
component, so that an integrator can judge the maturity of a component. 

Overall, this dimension concerns a component’s bill of health, which can in principle be con-
sidered at arbitrary levels of precision, w.r.t. domain-specific observer/attack models, and may 
include robustness requirements against side channel attacks (timing, EM radiation, cache be-
havior, . . . ). But the tools themselves must again in principle be represented as SBOM entries, 
reinforcing the need for a recursive / higher-order framework. 

functional refinement: when a component is compromised, an SBOM consumer needs to quickly 
identify possible remedies. To help evaluating potential alternatives, it may be useful to main-
tain application-specific refinement or substitution orders w.r.t. full functional correctness, 
conditional equivalence, information flow policies, or other approximate abstractions. 

Given these multi-dimensional requirements and the goal that at least some SBOM claims be un-
forgeable, we expect expressive SBOM frameworks will combine nominal inventories with code repos-
itories and easily searchable component databases, expressive reasoning capabilities, cryptographic 
machinery, and software analysis and verification tools. 

Building on notions such as formalized assurance cases [9, 10, 16], we argue that appropriate 
conceptual frameworks for understanding SBOMs are higher-order logics or expressive type theo-
ries, implemented in interactive proof assistants that embed declarative programming languages. 
A recent example for a logical system that builds on semi-automatic verification to construct a 
machine-checkable source-level counterpart of assembly-level linking is VSU [2]. Implemented in the 
Coq proof assistant and targeting software written in C, VSU extends the Verified Software Toolchain 
(VST, [5]) to separate compilation units, respecting hierarchical dependencies and supporting para-
metric module specifications. VST/VSU’s notion of specification subsumption [3] permits functional 
correctness specifications to be abstracted to memory safety or other more lightweight guarantees. 
This enables e.g. whole-program safety to be obtained compositionally, in a scalable fashion: for 
most components, safety is established using mostly-automatic static analysis, use of a safe language 
subset, or via code synthesis from a higher-level language. But some components – including those 
that provide cryptographic functionality, memory management, or other protection mechanisms (in-
cluding SBOM validation itself!)– need to be provably correct, not just safe; for these, the full power 
of VST is available [1, 4]. Integrating support for metadata as discussed above into VSU could yield 
a foundational basis for deep SBOM formats, in which Merkle trees or other blockchain techniques 
provide cryptographic attestation that oftentimes renders inspecting or replaying proofs unnecessary. 

More limited in their capability are Datalog-based frameworks such as the Evidential Tool Bus [7]. 
These are easier to develop and deploy, and can in principle be combined with proof-carrying-code [15] 
techniques that certify non-functional code-inherent properties (memory safety, information flow, 
limited resource consumption,. . . ) of low level code when source code cannot be made available. 

To be deployable in application areas envisioned by current NTIA-led SBOM efforts [13, 14] 
(although not using the presently envisioned formats), deep SBOMs will likely also need to support 
for incremental builds [6] and dynamic software update [11]. 

As an example for the necessity to support expressive reasoning, we note that publishing of 
SBOMs on public websites (as envisioned by the EO) not only enables intended consumers to 
quickly decide whether they are affected by a new vulnerability. It also benefits attackers, who 
learn where/how a compromised component is used, can hence design secondary attacks more easily, 
and receive a readily usable list of potential ransom victims. Thus, visibility of SBOM information 
may need to come with restrictions / zero-trust / privilege mechanisms; this needs to be analyzed 
when an SBOM’s trust and attack model is defined. 

Ultimately, we envision SBOMs to become unified with BOMs for physical artifacts, mirroring 
the ever tighter integration of software into robotics, IoT, or CPS systems on one hand, and the 
ever more detailed computational modeling of physical deceives and their application environments, 
i.e. the construction of digital twins, on the other. 
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