

Security Considerations: Software Supply Chain
Alexander M. Hoole

Fortify Software Security Research
Micro Focus International PLC

Santa Clara, USA
alexander.hoole@microfocus.com

Abstract— Enhancing security of the software supply chain
is already a work in progress, however, recent events
accentuating attacking the software supply chain have shown
there is still a long way to go. This position paper presents items
we believe are relevant to defining Standards and Guidelines to
Enhance Software Supply Chain Security related to Executive
Order (EO) 140228 sections: EO 4(g), EO 4(e)(i, ii, ix, and x),
EO 4(e)(iv and v) and 4(r).

0. INTRODUCTION

Critical software systems and the supply chains that
deliver them should be designed, and evaluated, with security
considerations relevant to confidentiality, integrity, and
availability (CIA). If a critical system has not been initially
designed with security at the fore, then security assessment
and mitigation activities should begin as early as possible to
minimize risk over time. Numerous articles, standards and
best practices have already entered the literature including
those by the National Institute of Standards and Technology
(NIST) [1][2][3][4], the Common Criteria ISO/IEC 15408, the
collection of guides from Defense Information Systems
Agency (DISA) Security Technical Implementation Guide
(STIG), OASIS SARIF [5], PCI SSF, and OWASP ASVS.

In accordance with Section 4 of the Executive Order on
Improving the Cybersecurity of the Federal Government
(14028), this position paper focusses on identified standards,
tools, best practices, and other guidelines relevant to helping
improve software supply chain security. Specifically, Section
1 relates to EO 4(g), Section 2 focusses on EO 4(e)(i, ii, ix,
and x), and Section 3 describes topics under EO 4(e)(iv and v)
and r(4).

1. CRITERIA FOR DESIGNATING "CRITICAL
SOFTWARE"

Ultimately, critical software should be clearly defined and
specifically scoped. The evaluation of critical software,
however, must factor in the observation that critical software
is part of critical systems. Criteria for evaluating the security
of critical software must be considered iteratively. First, direct
evaluation of the product/component under test without a
contextual environment. Second, the evaluation of the
product/component combined with its known dependencies
without a contextual environment. Finally, evaluation of the
product/component, along with its known dependencies,
within its expected environment(s). The concept is to uncover
risks using different approaches that are suited for different
phases of product maturity during development and
maintenance. Continuous evaluation is needed to account for
evolving knowledge, technology, and threats. We propose the
above observations should be considered when specifying
criteria for designating "Critical Software".

2. INITIAL LIST OF SECURE SOFTWARE DEVELOPMENT
LIFECYCLE STANDARDS, BEST PRACTICES, AND OTHER
GUIDELINES ACCEPTABLE FOR THE DEVELOPMENT OF
SOFTWARE FOR PURCHASE BY THE FEDERAL GOVERNMENT

Secure software development requires many different
facets, each which may have different levels of maturity
within a particular organization. These facets have been
documented and tracked by maturity models such as OWASP
Software Assurance Maturity Model (SAMM) and Building
Security In Maturity Model (BSIMM). Security and privacy
controls for mitigating security risks are described in NIST SP
800-53 [3] and the Common Criteria (ISO/IEC 15408)
provides tools for specifying, evaluating, and verifying
assurances. However, there are topics on the horizon which
deserve open debate.

A. Software Bill of Materials Visibility
Software Bill of Materials (SBOMs) promises to ease

knowledge sharing between parties interested in knowing and
understanding the inherent risks associated with a given
product by enumerating the software components that the
product is dependent upon. Transparency and principle of
least privilege can be viewed as opposing views, or positions,
and the benefits of having SBOMs available publicly vs.
available on a need-to-know basis for critical software should
be debated. Consider the audience who need to view SBOMs
related to open-source projects/components that are widely
consumed by other projects. For such open-source projects,
one could argue that the SBOM should be public knowledge
(by the very definition of open source). In contrast, consider a
critical proprietary component/product that is backing critical
infrastructure. In the case of the proprietary software, only
those who license the technology would have access to the
software artifacts and would have a need-to-know for the
SBOM. Proposed formats for SBOM information include the
following: Software Package Data Exchange (SPDX),
CycloneDX, and Software Identification (SWID) (ISO/IEC
19770-2:2015). While having SBOMs should be viewed as
critical for software supply chain security, who has access to
specific SBOMs should be critically considered.

B. Automation via integration into DevSecOps pipelines
While need-to-know is relevant to SBOMs, the level of

obtained assurances from deployed mechanisms during secure
software development is relevant to automation integrations.
Specifically, scalability versus coverage should be a
consideration in DevSecOps pipelines. Guidelines and best
practices must ensure that the security attestations, specifying
which risks have been evaluated, for a delivered artifact,
meaningfully reduce relevant risks related to the software
under test. Selected technologies and processes must support
the attestations when recommending automation approaches.

C. Risk consideration related to adopting control(s)
Standards, best practices, and other guidelines often

recommend specific technologies to accomplish desired goals.

mailto:alexander.hoole@microfocus.com

In the case of software supply chain security, however, the
industry has observed attackers leveraging vulnerabilities of
existing systems within a targeted environment as the
launching point for exploits. Thus, due diligence is required to
ensure that technologies deployed to mitigate security risks,
and the environments they are conducted within, do not
introduce additional risk(s) which could be more severe than
what they are preventing.

3. INITIAL MINIMUM REQUIREMENTS FOR TESTING
SOFTWARE SOURCE CODE

Within the context of standards, best practices, and other
guidelines for secure software development lifecycles lies the
domain of testing software source code. In this section we
briefly introduce a series of positions to be considered when
specifying minimum requirements.

A. Coverage: In terms of reducing the risk of a breach,
minimizing false negatives related to "critical" unknown
weaknesses and vulnerabilities is more important than
checking a compliance box that "some testing" has been
completed. The capabilities of the selected technologies
must be aligned to the security requirements of the
critical software under test regarding identification and
mitigation of relevant risks. Vectors include the
following: depth of analysis over context of source code,
programming language coverage, API coverage,
weakness/vulnerability coverage, and type of analysis.
Each of these vectors have an impact on the ability to
detect a given flaw.

B. Metrics and Filters: Metrics are continually evolving to
esnure that software development can be aware of the
most impactful critical vulnerabilities to be mitigated
(e.g. CWE Top 25, OWASP Top 10, etc.). Presently,
however, the majority of thes metrics are industry and
technology agnostic. Moving forward,
technology/industry domain-specific and role-specific
reporting of issues that are relevant for target audiences
can help reduce waisted resources (e.g. suppress
reported issues not relevant to a target audience).

C. Software Component Analysis: Improving patch
management practices and component tracking to reduce
risk related to publicly known vulnerabilities is critical
to risk reduction. In parallel to reducing risk in the
software we write is the need to identify and protect
against the risks introduced by the code we consume.
We must continue to expand capabilities in software
component/composition analysis domain to provide
more precise risk assessment related to the susceptibility
of risks impacting a specific product under test.
Consideration must also be given to risks that bring into
context risks which may be viewed as out of context.
Specifically, vulnerabilities related to deserialization and
reflection have the ability to instantiate code that naively
could be considered out of scope, For example, a gadget
in the Java classpath could bring a CVE into scope that
otherwise is not visibly referenced in the source code of
the application under test.

D. Insider Threat: Supply chain threats must be considered
from both an internal and external risk perspective.
Starting from the broader scope of insider threat, such as
covered in the Insider Threat Mitigation Guide by the
Cybersecurity and Infrastructure Security Agency, we
must eventually arive at the specifics for identifying
insider threats technically and indications to whether or
not they are intentional or accidental. Technologies
which support the identification of "injected flaws" and
how they came to be could reduce future risk.

E. Auditing and triaging: Far too many individuals expect
results from application security products to be
actionable intelligence and skip the auditing step to
verify a given finding. When discussing process, it
would be prudent to emphasize that while security tools
should be integrated into the DevSecOps pipeline and
run automatically, providing mechanisms and guidance
for developers/security personnel to validate, verify, and
triage results in systems which provide efficient and
time-saving interfaces and controls is also needed.

Leveraging AI/ML systems to be a force multiplier when
dealing with testing results, to capture the knowledge of
their most proficient appsec professionals, and adapt to
the specific threat postures of an organization can also
be considered a best practice.

F. Education: Continuous targeted training and education
of development community towards the goal of reducing
the number of future weaknesses/vulnerabilities. Since
the risk related to attrition and turnover is very real in
the software development and application security
domain, education is required to ensure minimal levels
of competencies.

ACKNOWLEDGMENT

We appreciate the opportunity to provide comments to the
NIST on the Standards and Guidelines to Enhance Software
Supply Chain Security.

REFERENCES

[1] Boyens, J. , Paulsen, C. , Bartol, N. , Winkler, K. and Gimbi, J. (2021),
Key Practices in Cyber Supply Chain Risk Management: Observations
from Industry, NIST Interagency/Internal Report (NISTIR), National
Institute of Standards and Technology, Gaithersburg, MD, [online],
https://doi.org/10.6028/NIST.IR.8276 (Accessed May 26, 2021).

[2] Boyens, J. , Paulsen, C. , Moorthy, R. and Bartol, N. (2015), Supply
Chain Risk Management Practices for Federal Information Systems
and Organizations, Special Publication (NIST SP), National Institute
of Standards and Technology, Gaithersburg, MD, [online],
https://doi.org/10.6028/NIST.SP.800-161 (Accessed May 26, 2021).

[3] Ross, R. and Pillitteri, V. (2020), Security and Privacy Controls for
Information Systems and Organizations, Special Publication (NIST
SP), National Institute of Standards and Technology, Gaithersburg,
MD, [online], https://doi.org/10.6028/NIST.SP.800-53r5 (Accessed
May 26, 2021).

[4] Ross, R. (2018), Risk Management Framework for Information
Systems and Organizations: A System Life Cycle Approach for
Security and Privacy, Special Publication (NIST SP), National Institute
of Standards and Technology, Gaithersburg, MD, [online],
https://doi.org/10.6028/NIST.SP.800-37r2 (Accessed May 26, 2021).

[5] Static Analysis Results Interchange Format (SARIF) Version 2.0.
Edited by Michael Fanning and Laurence J. Golding. 27 May 2019.
OASIS Committee Specification Draft 02 / Public Review Draft 02.
https://docs.oasis-open.org/sarif/sarif/v2.0/csprd02/sarif-v2.0-
csprd02.html. Latest version: https://docs.oasis-
open.org/sarif/sarif/v2.0/sarif-v2.0.html.

https://open.org/sarif/sarif/v2.0/sarif-v2.0.html
https://docs.oasis
https://docs.oasis-open.org/sarif/sarif/v2.0/csprd02/sarif-v2.0
https://doi.org/10.6028/NIST.SP.800-37r2
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-161
https://doi.org/10.6028/NIST.IR.8276

