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Introduction 

Distributed code deployments today rely very heavily on a complex series of transformation and inspection operations, 
called the software supply chain, for the creation of an executable bundle that is run at a cloud provider. For example, a 
compilation tool transforms one or more input software artifacts (i.e., source code fles and shared libraries) generating 
one or more output artifacts (i.e., bytecode or binary fles, other shared libraries, container images). These may then 
subsequently be passed as input artifacts to an automated testing tool, inspecting the functionality of the artifacts 
without modifying them, and returning the test results. Thus, we refer to a software artifact and attached metadata as an 
executable bundle that can be deployed at a cloud provider. 

However, a plethora of attacks have undermined the integrity of entire deployments by compromising one or more 
operations of the software supply chain [2–4, 6, 7, 10, 13, 15, 17–19]. Prior work [5, 8, 9, 21] has proposed addressing 
these issues by capturing metadata about software artifacts to obtain verifable information about the supply chain of an 
application. in-toto [21], in particular, realizes this approach relying on cryptographically verifable metadata about 
each individual supply chain operation to ensure that an executable bundle was indeed created by the expected supply 
chain tools in the expected order. 

Yet, as distributed computing continues to evolve, we observe three major trends that introduce new security 
challenges to code deployment. 

1. Rise of the microservices. Rather than deploying a monolithic, self-contained, fully packaged application, 
developers increasingly decompose an application into small, independent components. These microservices are then 
uploaded at a cloud provider enabling greater application portability, effciency and fault isolation. 

2. Shift towards lightweight containers. As cloud providers seek to optimize resource usage while improving 
microservice performance they employ lighter weight execution environments that rely on software-based techniques 
for isolation in a multi-tenant setting (e.g., [16, 20]). However, this means cloud providers can no longer rely on virtual 
machine-like mechanisms to protect their resources against vulnerable or buggy code, and strongly isolate co-tenant 
microservices. 

3. On-demand deployment. To further optimize resource usage, hosting services determine on-demand which 
compute platforms are most suitable to deploy particular microservices. 

The core problem. These three trends demonstrate that today’s distributed applications require more adaptable and 
comprehensive means to establish trust in deployed code. That is, it is no longer suffcient to only ensure that code is 
generated by the expected software supply chain. 

Deployed microservices must adhere to a multitude of application-level security requirements and regulatory 
constraints imposed by mutually distrusting application principals– software developers, cloud providers, and even data 
owners. Although these principals wish to enforce their individual security requirements, they do not currently have a 
common way of easily identifying, expressing and automatically enforcing these requirements at deployment time. 

Our Proposal. CDI (Code Deployment Integrity) is a security policy framework that enables distributed application 
principals to establish trust in deployed code through high-integrity provenance information. 

We observe that principals expect the software supply chain to preserve certain code security properties throughout 
the creation of an executable bundle, even if the code is transformed or inspected through various tools (e.g., compilation 
inserts stack canaries for memory safety). Our key insight in designing CDI is that even if application principals do not 
trust each other directly, they can trust a microservice bundle to meet their security policies if they can trust the tools 
involved in creating the bundle. 
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2 Code Deployment Integrity 

As a microservice is created through a software supply chain, each tool in the supply chain digitally signs its input and 
output as well as operation-specifc metadata (e.g., compiler fags, testing confguration). Crucially, CDI metadata also 
embeds a cryptographic hash of the metadata attached to each input artifact generated by “upstream” operations forming 
a hash tree that represents an auditable provenance chain for the entire supply chain of the executable microservice 
bundle received by the cloud provider. 

2.1 Key Components 

Protecting the integrity of the CDI metadata and effciently auditing the provenance chain is vital to the security and 
adoptability of CDI. We address these important challenges with two key mechanisms. 

1. Trusted execution environments (TEEs). CDI leverages TEEs (e.g., [1, 11, 12, 14]) for their hardware-enforced 
integrity and authentication properties for code and data. Specifcally, running individual software supply chain tools in 
a TEE such as Intel SGX [11] can help CDI extend and enforce provenance in hardware. As tools derive their signing 
keys within an enclave, the digitally signed CDI metadata is bound to the specifc platform that generated the keys. 

2. Vetting authorities. CDI introduces independent entities called vetting authorities that are responsible for certifying 
that specifc software supply chain tools preserve the expected security properties. Specifcally, CDI requires vetting 
authorities to produce digitally signed tool certifcations that can be embedded in a tool’s provenance metadata. 
Additionally, vetting authorities could leverage TEE technology to remotely authenticate the TEE-enabled tools they 
are certifying. 

In practice, we envision each vetting authority will determine the exact process by which to vet individual supply 
chain tools. To enable vetting a large array of supply chain tools available to developers and cloud providers today, CDI 
supports a hierarchy of vetting authorities akin to how traditional certifcate authorities operate today. 

2.2 Design Goals 

Our design of CDI meets the following three goals. 
G1: Code provenance can be validated without revealing any software artifacts. Only the cryptographic hashes 

(e.g., SHA-256) of both input and output artifacts are included in CDI metadata. Thus, application principals need not 
share proprietary or highly privacy-sensitive artifacts directly with other principals to enable validation. 

G2: Application principals need not rely on a single centralized root of trust. Developers, cloud providers and 
data owners may independently select the vetting authorities they trust to properly certify tools in the software supply 
chain ecosystem. Further, CDI allows principals to require a threshold number of trusted vetting authorities to have 
certifed a given tool for added confdence in its operation. At validation time, CDI ensures that a microservice’s 
provenance meets all specifed trust policies. 

G3: Trust in code can be established at deployment time without a priori knowledge of the tools that created 
the code. As long as a chain of trust between a vetting authority and a given tool can be established, the CDI provenance 
metadata is suffcient to gain trust in a microservice and ensure it enforces a principal’s security policy. 

3 Conclusion 

We have presented CDI (Code Deployment Integrity), a framework for verifably capturing and validating microservice 
security properties and requirements via high-integrity metadata about the software supply chain. Our goal is to enable 
security-oriented code deployment, in which provenance metadata can be used to enforce complex security policies 
imposed by a multitude of application principals. By leveraging trusted execution environments and vetting authorities 
that act as trusted intermediaries, CDI provides strong integrity for code provenance metadata while reducing adoption 
efforts for software developers compared to prior approaches. 
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