
Secure Software Development Artifacts 
Eric Schulte Director of Automated Software Engineering eschulte@grammatech.com 

Software supply chains span diverse closed- and open-
source production environments. These chains trans-
mit implants and vulnerabilities into software systems. 
Pursuant to executive order sections 4(e)(ix and x) [1] 
we propose a range of regulations and requirements to 
be imposed on secure software development environ-
ments. Critical software exists on a spectrum in which 
the most critical and depended-upon software projects 
are “too big to fail” and — as with utilities — should 
be subject to commensurately stringent regulation 
and requirements (see Figure 1). 

RegulationCriticality Artifacts

Symbols & Debug

Specification

Existence

Results

Coverage

Environment

Source

Incidental

Critical
“too big to fail”

least

most

SAST/DAST

Figure 1: Spectrum of criticality and regulation. 

The following artifacts are routinely produced dur-
ing secure software development: symbols and debug 
information; source; specification; and Static Analy-
sis Software Testing (SAST) and Dynamic Analysis 
Software Testing (DAST) results, coverage, and envi-
ronment. We recommend distributing these artifacts 
alongside software to secure the software supply chain. 
We describe the security impact of this distribution 
and when it should be required along the spectrum 
of software criticality. These deliveries should be: 
Cryptographically signed by the software developer, 
Machine readable, and distributed in a Standard for-
mat. We justify these recommendations below. 

Required Artifacts 
These artifacts provide the consumer with information 
about the software and inform the consumers’ trust in 
the software. Increasingly complete artifacts enable 
reproduction of software evaluations up to enabling 

consumer-side reproduction of all software security 
evaluations and safe modification of the software to 
individualized specifications. This enables a zero trust 
approach to supply chain management. We believe 
this extreme is necessary for truly critical software. 

1.1 Software Information 
Symbols, relocations, and debug information are often 
removed from libraries and executables by compilers. 
However, without this information the consumers’ 
ability to inspect, validate, instrument, harden, and 
modify the delivered software is degraded. Stripping 
this information is e˙ectively binary obfuscation and 
may be justified to protect intellectual property (IP) 
but is anathema to a secure supply chain. 

Source plays the same role, greatly increasing the 
ability of the end user to inspect, validate, instrument, 
harden, and modify delivered software. However the 
risk of IP theft is commensurately increased. For 
truly systemically important software we believe open-
source development should be required – potentially 
with compensation to the software owner. 

Specification documents software’s intended function-
ality and may be written in natural language, dynamic 
tests, or formal machine-checkable logic. Specifica-
tions enable consumers to validate that software im-
plements fully and only the specified functionality. 

1.2 SAST / DAST 
For both static and dynamic security testing we pro-
pose the following classes of artifacts be distributed 
with the delivered software. These allow the consumer 
to enforce their own standards of security and are pre-
sented in order of increasing information and control 
for the consumer and decreasing trust of the producer 

Results are simple statements that security testing 
has taken place and may mention a specific standard. 

Coverage provides information on the degree of the 
security testing. The most widely used example is 
test coverage, i.e. the fraction of the software executed 
by the test suite. It is common to calculate test cov-
erage automatically and regularly check it alongside 
standard test results. Branch coverage and mutation 

© 2021 Grammatech, Inc. All rights reserved. 

1 

mailto:eschulte@grammatech.com


coverage [2] are more sophisticated forms of test cov-
erage. Mutation coverage may be used to evaluate 
SAST as well as DAST tools. Specialized forms of 
mutation coverage such as bug injection provide more 
probative evaluations of SAST and DAST tools [3]–[6]. 
This evaluation is particularly critical for SAST tools 
which are diÿcult to configure and use [6], and their 
failure modes are easily misinterpreted as a lack of 
bugs in the software. 

Environment (e.g. a test platform, cases and expected 
results) enables full SAST/DAST reproduction so con-
sumers no longer need to trust the software developer, 
development environment, or the delivery mechanism. 
This gold standard should be required for all criti-
cal software and is only achievable with open-source 
software and fully reproducible security artifacts. 

1.3 Enabled workflows 
These artifacts enable the following workflows: 

Validate. Specification and SAST/DAST artifacts 
allow users to check (with results or coverage) or 
confirm (with an environment) software conforms 
to security standards even enabling formal proofs. 

Instrument. Source or symbols enable instrumenta-
tion to collect test coverage, guide greybox fuzz 
testing [7], and apply sanitizers to detect common 
classes of bugs and vulnerabilities [8]. 

Harden. Source or symbols allow end users to harden 
their software to protect against many classes of 
vulnerabilities [9], [10]. 

Debloat. Specifications and SAST/DAST artifacts 
allow consumers to reduce software to the mini-
mum required to meet their needs [11]–[14]. De-
bloating can reduce complexity and attack sur-
face, and can remove otherwise hard to detect or 
defeat malicious upstream implants [15]. These 
techniques are increasingly powerful with symbols, 
source, or SAST/DAST environments. 

2 Distribution 
These artifacts should always be accompanied by: 

Cryptographic signatures serve two important roles. 

First, they serve as an integrity check for any delivered 
software or security artifact. Second, they associate 
that artifact with a developer’s identity. Trust is 
rooted in developer identity. 

Machine readability and standard formats, e.g. the 
Static Analysis Results Interchange Format (SARIF), 
are essential to allow automatic processing of artifacts, 
enabling a consumer’s automated software assurance 
and evaluation to integrate supply chain information. 

3 Conclusion 
Distribution of secure software development artifacts 
enables consumers to manage supply chain risk. Sys-
temically important software requires full disclosure. 

References 
[1] J. R. B. Jr., “Executive order on improving the 

nation’s cybersecurity.” 
[2] Y. Jia et al., “An analysis and survey of the 

development of mutation testing” 
[3] B. Dolan-Gavitt et al., “LAVA: Large-scale au-

tomated vulnerability addition” 
[4] P. Hulin et al., “AutoCTF: Creating diverse pwn-

ables via automated bug injection” 
[5] S. Roy, et al., “Bug synthesis: Challenging bug-

finding tools with deep faults” 
[6] V. Kashyap et al., “Automated customized bug-

benchmark generation” 
[7] A. Fioraldi, et al., “AFL++: Combining incre-

mental steps of fuzzing research” 
[8] D. Song et al., “SoK: Sanitizing for security” 
[9] L. Szekeres, et al., “SoK: Eternal war in memory” 
[10] P. Larsen, et al., “SoK: Automated software 

diversity” 
[11] C. Qian, et al., “RAZOR: A framework for post-

deployment software debloating”
[12] M. Gha˙arinia, et al., “Binary control-flow trim-

ming”
[13] K. Heo, et al., “E˙ective program debloating via 

reinforcement learning” 
[14] C. Soto-Valero, et al., “Trace-based debloat for 

java bytecode” 
[15] K. Thompson, “Reflections on trusting trust” 

© 2021 Grammatech, Inc. All rights reserved. 


	Required Artifacts
	Software Information
	SAST / DAST
	Enabled workflows

	Distribution
	Conclusion
	References

