
1 

Automated Coverage-Driven Dynamic Testing for Assurance 

Alexey Loginov Vice President of Research, GrammaTech, Inc. alexey@grammatech.com 

Benefits 
Testing has been a part of the Software Development 
Life-Cycle (SDLC) from the start. Developers val-
idate partially constructed systems with unit tests 
and testers evaluate full systems with end-to-end and 
integration tests. In modern software organizations, 
much of the testing is automated in continuous inte-
gration/continuous deployment (CI/CD) pipelines. 

A major challenge with traditional testing is its limited 
coverage: manually constructed tests are unlikely to 
reveal all issues, e.g., because tests created by those 
involved in the system’s design and implementation 
are biased towards testing anticipated behaviors. 

Testing-based (dynamic) approaches explore an under-
approximation of the e˙ectively infinite number of 
possible states of a system. There exist many notions 
of test coverage from statement coverage, to branch 
coverage, to Modified Condition/Decision Coverage 
(MC/DC) that is used for testing most critical (Level 
A) avionics software, following standards DO-178B 
and DO-178C. However, achieving such guarantees 
requires extensive time and expertise. 

Static analysis gets around the issue of analyzing 
infinite-state systems by performing abstraction. By 
over-approximating the system’s potential states, it 
can provide guarantees of the system’s correctness. 
While applying a static analysis can be automatic, the 
design of an analysis for a new setting and the review 
of the resultant warnings can be very labor-intensive. 

Further, static analysis of realistic systems cannot 
achieve perfect precision and recall (theoretically or 
in practice). While there exist highly tuned analyzers 
that aim to provide guarantees in a narrow setting 
(e.g., the avionics of a specific plane), most commer-
cial static analyzers strike a balance between provid-
ing assurance and overwhelming analysts with false 
positives. Using such tools still requires significant 
configuration, a review of many warnings (to confirm 
true positives), and analysis of possible blind spots. 

As a complement to static analysis, coverage-driven 
dynamic testing provides the following benefits: 

• Generally, dynamic testing does not rely on 
source code or build scripts for the tested system. 
Most static analyzers operate on the source code. 
(Although, there exist advanced static analyzers 
that handle stripped machine code.) 

• Dynamic testing provides broad coverage of 
problems–as long as an issue is detectable at 
runtime (e.g., as a crash or a violation of some 
condition), it will be identified if a triggering 
input is provided. Static analysis, on the other 
hand, requires the implementation of checks or 
models for each potential issue. 

• Dynamic analysis produces no false positives–an 
error detected with an input that was accepted 
by the tested system should be addressed. 

• Dynamic testing produces explainable results: 
one may guess the likely cause of problems based 
on just the input or can follow the flow of the 
input through the test system in a debugger. 

• Test-case generation, e.g., using fuzzing, enables 
automated test-input construction. This leads to 
increasingly e˙ective test suites over time. 

These benefits make coverage-driven dynamic testing 
more informative and conclusive than static analy-
sis alone, especially in the absence of source code. 
These benefits are well-known and we recommend 
that these techniques be used in many SDLC phases 
(release testing, acceptance testing, penetration test-
ing, sustainment, and sparingly in CI/CD), as well 
as for more platforms (Linux, Windows, embedded 
devices, SCADA/ICS systems, etc.). However, there 
exist challenges to wider adoption of these capabilities. 
Below, we discuss some of the challenges and suggest 
promising techniques for addressing them. 

2 Challenges 
1. The most obvious challenge for dynamic testing 

is achieving thorough coverage (without putting 
the burden of test creation on humans). How 
can we generate new inputs that are driven to in-
crease test coverage and how can we maximize the 
chance of detecting subtle problems that might 
not manifest themselves as crashes? 

© 2021 Grammatech, Inc. All rights reserved. 
Position Statement for Area 4 (initial minimum requirements for testing software source code) 

mailto:alexey@grammatech.com


3 

2. To ensure relevance to the common scenario in 
which a customer (or integrator) does not receive 
source code, we need to enable these capabilities 
for binary executables and libraries. 

3. Another big challenge is how to run realistic 
applications. Traditional fuzzing, for instance, 
explores extensive variations on a given input 
(command-line or file) but isn’t prepared to han-
dle a variety of input channels, such as files, net-
works, GUI, etc. Can we automate the creation 
of harnesses, capable of supplying a variety of 
input types to complex applications? 

4. Finally, while fuzzing has been applied exten-
sively to Linux applications, little is available for 
firmware or even Windows. Can we extend the 
support with the same level of automation and 
eÿcacy to all platforms? 

Promising Solutions 
We have been working to develop solutions to these 
problems and suggest some of the key concepts as 
relevant to the overall goal of e˙ective automated 
dynamic testing of software for higher assurance. 

We feel that greybox fuzzing provides the most promis-
ing approach to Challenge 1 (thorough coverage). 
Greybox fuzzing uses instrumentation to monitor 
paths explored by inputs and uses this information 
to prioritize inputs that uncover new behaviors for 
further mutation and exploration. To ensure that 
fuzzing uncovers as many issues as possible, in our 
approach to the problem, we combine greybox fuzzing 
with error amplification–that is, transforming the test 
program in a way that maximizes the chance of rais-
ing an alarm in case of undefined or unsafe behaviors. 
Additionally, to ensure that fuzzing maximally ex-
plores the behaviors of the test target, it will become 
increasingly important to apply grammar-based or 
structure-aware fuzzing to help focus the evaluation 
on valid inputs to the test target. (It will be imper-
ative, however, to automate the specification of the 
grammars/structures as much as possible.) 

Binary-only approaches, such as binary editing and 
software dynamic translation, can address Challenge 

2 (lack of source code). To ensure high performance 
of testing, our approach relies on binary editing. 

To address Challenge 3 (running realistic applications), 
one can create a component that acts as a harness for 
a wide variety of applications. In our approach, we 
chose to create a generic harness mechanism that is 
able to serve data on many di˙erent input channels 
and configure this harness with a manifest. We create 
such a manifest automatically by observing a few 
executions of the test target. 

Many safety- and security-critical systems are in the 
form of embedded devices, cyber-physical systems, 
and other less-studied and less-tested platforms. Gen-
erally, automated dynamic testing cannot be executed 
on such platforms and analysts have relied on complex 
simulations/emulations to validate system behavior. 
To address Challenge 4, we are investigating the abil-
ity to evaluate components of embedded systems in 
isolation, for example, by extracting components (such 
as a web server built into a device) out of an embed-
ded binary and performing extensive fuzzing of the 
component in an emulation environment. (Note that 
this requires handling attempted accesses to missing 
hardware interfaces and system/library calls.) 

4 Summary 
Higher assurance for the software supply chain re-
quires more automation and more coverage of the 
possible issues. Automated coverage-driven dynamic 
testing based on greybox fuzzing and error amplifica-
tion o˙ers the promise of large scale, easy-to-deploy 
dynamic testing capable of discovering many subtle 
flaws. To benefit the common case of software delivery 
without source code, as well as the maintenance and 
sustainment of legacy systems, it will be important 
to apply these techniques to binary executables and 
libraries. To ease adoption, it will be crucial to au-
tomate the process of creating harnesses for complex 
applications. Finally, it will be vital to extend this 
capability to many platforms, especially embedded 
systems, which are controlling an increasing propor-
tion of the world’s safety- and security-critical devices. 

© 2021 Grammatech, Inc. All rights reserved. 
Position Statement for Area 4 (initial minimum requirements for testing software source code) 


	Benefits
	Challenges
	Promising Solutions
	Summary

