

So�ware Supply Chain Integrity
Submi�er: Eric Brewer, on behalf of Google, LLC

Topic: (5) Guidelines for so�ware integrity chains and provenance

Speakers: Mark Lodato, Sta� So�ware Engineer, lodato@google.com

The recent high-pro�le supply chain a�acks like those on SolarWinds and CodeCov were

integrity a�acks—unauthorized modi�cations to so�ware packages. These a�acks appear to

be on the rise, and worse still, supply-chain vulnerabilities are widespread and without
comprehensive solutions.

We propose Supply chain Levels for So�ware A�ifacts (SLSA, pronounced “salsa”) as an

end-to-end solution, based on Google’s internal “Binary Authorization for Borg” that has been

in use for the past 8+ years and that is mandatory for all of Google's production workloads. We

envision SLSA to work in tandem with existing solutions such as SBOMs to address a broad

range of threats in a comprehensive, easily adopted framework for the wider industry.

Supply-chain integrity is a multifaceted problem. Threats are present at each point in the

so�ware supply chain, as pictured in the following diagram. For example, the SolarWinds a�ack

involved a compromised build pla�orm (D), while the CodeCov a�ack involved compromised

package uploader credentials (F).

We broadly divide integrity into two main areas:

Source Integrity and Availability: Ensure that changes to the source code re�ect the intent
of the organization that owns the source without any tampering, and that the code and

change history remain available for investigations and incident response.

Build Integrity: Ensure that packages are built from the correct, unmodi�ed sources and

dependencies according to the build recipe de�ned by the so�ware producer, and that
a�ifacts are not modi�ed as they pass between development stages.

SLSA addresses all of the integrity threats (A) through (H) with emphasis on the most pressing

threats. SLSA is a framework for ensuring that so�ware packages meet well-de�ned integrity

standards, such as code review, change history, build isolation, and provenance generation.

mailto:lodato@google.com
https://github.com/slsa-framework/slsa
https://cloud.google.com/security/binary-authorization-for-borg
https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/
https://about.codecov.io/security-update/
https://about.codecov.io/security-update/

Automated policy enforcement gives consumers con�dence in the so�ware’s integrity, and

simple numeric “levels” enable incremental adoption and succinctly convey security posture.

Provenance and policies
We believe that trustwo�hy so�ware metadata is essential to prevent and detect a�acks on

integrity and for incident response. SLSA recommends in-toto a�estations, and pa�icularly

provenance1, to provide metadata that: 1) is authenticated; 2) contains the necessary

immutable2 information, such as dependency trees, to address supply chain threats; 3) is

generated easily and automatically; and 4) is interoperable across pla�orms and build steps.
Impo�antly, these a�estations can be assembled into a directed acyclic graph to analyze the

supply chain through transitive dependencies back to original source code.

A policy engine consumes this metadata as evidence that the so�ware was built according to

the expected process, and that this process met standard integrity guarantees. For example, a

policy might require a package to be built from a pa�icular git repository by a pa�icular build

service; the engine would reject packages that lack the expected build metadata. Each policy

has a numeric level (1-3) describing its security strength, which consumers can rely on to

quickly understand security posture.

Trusting pla�orms, not users
Our goal is to minimize the number of pa�ies that consumers of so�ware must trust, and to

have controls to prevent abuse of that trust. SLSA encourages a small number of high-integrity,
trustwo�hy source, build, and packaging pla�orms because they are hard to build correctly.
SLSA requires these pla�orms to implement strong administrative access controls such as

multi-pa�y authorization, mandatory audit mechanisms, and securely built and deployed

so�ware. Going forward, we can reduce the need to trust any single pla�orm through

techniques such as reproducible builds and/or trusted execution environments.

Impo�antly, we place responsibility for producing provenance with the build pla�orm and not
with user-provided tooling that runs on top of the pla�orm. This reduces the scope of trusted

actors and mitigates risks from project members, such as abuse of provenance signing keys.

Integration with SBOM

SBOM is impo�ant for supply-chain security, pa�icularly vulnerability management and IP

licensing, but it is not necessarily the same as SLSA’s provenance. SLSA’s provenance is

essentially an easy-to-generate “intermediate form” that captures the integrity aspects of the

supply chain. It can be used to produce an SBOM on demand, possibly with supplemental
information whose integrity is also protected by SLSA provenance. This has an advantage over

traditional SBOM in that it provides authentication and integrity, stronger guarantees about
completeness, and practical traversal of the dependency graph to arbitrary depth.

In summary, SLSA is a comprehensive end-to-end framework to address integrity threats. It is

practical to deploy, complementary to SBOM, and based on a model proven to work at scale.

1 We use the term “provenance” more broadly than SBOM, to mean how an a�ifact was generated.
2 A�ifacts are immutable because they are “sealed” by signatures and hashes, ensuring tamper resistance and preserving
contents. The tree is immutable as all of the nodes and links are immutable.

https://github.com/in-toto/attestation
https://github.com/in-toto/attestation/blob/main/spec/predicates/provenance.md
http://reproducible-builds.org/
https://en.wikipedia.org/wiki/Trusted_execution_environment

