

Software Source Code Testing
Submi�er: Eric Brewer, on behalf of Google, LLC

Topic: (4) Initial minimum requirements for testing so�ware source code

Speakers: Oliver Chang, Sta� So�ware Engineer, ochang@google.com

Jonathan Metzman, Senior So�ware Engineer, metzman@google.com

Continuous fuzzing

Fuzzing is the process of feeding automatically generated data to a so�ware program to �nd

unexpected bugs, and it has evolved from a tool used in one-o� e�o�s by security researchers into an

integral pa� of the so�ware development process. Since so�ware is developed continuously and

changes over time, fuzzing must also be continuous and work seamlessly alongside traditional so�ware

testing practices such as unit or integration testing.

By incorporating continuous fuzzing in development work�ows, many security issues can be caught
early in the so�ware development lifecycle before any production releases are made. Pre-release

fuzzing is especially impo�ant because fuzzing is a method also employed by malicious pa�ies; early

fuzzing by so�ware developers helps identify vulnerabilities before they are found by others.

Google does fuzzing at scale to great success for almost all so�ware projects. For instance, continuous

fuzzing accounts for almost half of all security vulnerabilities repo�ed in the Chromium1 browser.
Beyond Google, services such as OSS-Fuzz2 also provide continuous fuzzing to the maintainers of over

500 critical open source projects. To date, OSS-Fuzz has resulted in over 5,000 �xed vulnerabilities

across projects such as OpenSSL and systemd.

1 Chromium Browser - h�ps://www.chromium.org
2 OSS-Fuzz - continuous fuzzing for open source so�ware - h�ps://github.com/google/oss-fuzz

mailto:ochang@google.com
mailto:metzman@google.com
https://github.com/google/oss-fuzz
https://www.chromium.org/

The continuous fuzzing work�ow is demonstrated in the diagram above. A so�ware developer writes a

small fuzzing harness, akin to a traditional unit test. Then, automation will manage the rest of the

process end-to-end. This involves continuously building the latest source, to �nding crashes via fuzzing,
to deduplication and issue �ling. Then, a�er testing shows that the bug has been �xed, the issue is

closed automatically, and the cycle repeats itself as the so�ware is fu�her developed. The result is that
fuzzing becomes a natural pa� of all developer work�ows.

Throughout this process, a�ifacts are generated that allow evaluation of the overall success. For

example, coverage repo�s provide a quantitative measure of how much of the so�ware is tested.
Fuzzing also continuously builds a corpus of inputs and regression tests that provide another indication

of the vulnerabilities that were found and resolved. Turnaround time for bug �xes is another useful
measure.

Securing dependencies
Simply testing a so�ware’s primary codebase is not enough, as most so�ware relies on a large number

of third-pa�y libraries. In addition to fuzzing the codebase, we advocate automatically checking these

dependencies for adherence to security best practices and scanning them for known vulnerabilities.
The OpenSSF3 foundation created the Scorecard4 tool to provide security health metrics for any open

source library. This tool can be used to generate an automated repo� of the security posture of a

project and all dependencies that it uses.

For vulnerability scanning and dependency updates, tools such as depandabot and renovatebot provide

varying degrees of automation. However, these tools must be accompanied by good automated test
coverage to ensure that automated updates can be done reliably without breaking the primary use case.

More development is needed in this space. One key problem today is that matching vulnerabilities to a

so�ware’s dependencies is di�cult to do in an automated way. Many existing standards do not track

package names and precise version ranges in a way that is consistent with what’s actually used, leading

to missed vulnerabilities. There are also many vulnerability databases with di�erent format standards,
requiring di�erent tooling and parsers for each. Google has sta�ed the OSV5 e�o� in collaboration with

open source communities to improve automated vulnerability matching and sharing, including a schema

format to enable interchange6.

Summary
To conclude, continuous fuzzing is a very e�ective way of preventing vulnerabilities from being

introduced, and should be integrated into the development process of all so�ware projects. In addition

to this, all dependencies of a so�ware project should be regularly checked by automated tools to make

sure they follow good security practices and are free of known vulnerabilities.

3 OpenSSF - open source security foundation - h�ps://openssf.org/
4 Scorecard - security health metrics for open source - h�ps://github.com/ossf/scorecard
5 OSV - vulnerability database and triage service for open source - h�ps://github.com/google/osv
6 Proposed vulnerability interchange format for triage automation - h�ps://tinyurl.com/vuln-json

https://tinyurl.com/vuln-json
https://github.com/google/osv
https://github.com/ossf/scorecard
https://openssf.org/

