

Security Measures for Critical So�ware
Submi�er: Eric Brewer, on behalf of Google, LLC

Topic: (3) Guidelines outlining security measures for critical so�ware

Speakers: Jon McCune, Principal So�ware Engineer, jonmccune@google.com

Even so�ware with a sound provenance record can lead to an insecure system if that system is not
designed and con�gured appropriately. Because security is never pe�ect, mechanisms must be in place

to mitigate and recover from vulnerabilities or a�acks. This paper o�ers guidance for mitigation:
managing con�guration, reducing privilege, and network segmentation, that have withstood the test of

time at Google.

Proper Con�guration

Patching and Updates. Patches and updates should be suppo�ed as pa� of day-to-day operations

with frequently-used procedures. This practice ensures that vulnerabilities are addressed as soon as

possible, and reduces availability risk because the procedures are pa� of normal operations.

Con�guration Management. So�ware systems should use revision control systems to store

con�guration data, similar to those used to manage source code and release a�ifacts, and should

separate con�guration data from executable code such as scripts. These techniques reduce the

complexity of the deployed so�ware system and make it easier to reason about during an incident.

Rollback Suppo�. Ensure that tooling suppo�s return to a known-good state. This allows rapid and

con�dent response to a recent problematic change, such as a feature that is discovered to contain a

security vulnerability. This is an area where con�guration management is useful, since revision control
systems have rich suppo� for tracking and managing multiple releases.

Know Your Hardware. Do not forget to manage hardware-speci�c a�ifacts, such as �rmware for

motherboards, peripherals, and management controllers. These highly privileged components may

otherwise be le� with outdated and vulnerable �rmware. These management requirements should be

pa� of the hardware selection criteria, as vendors' security practices vary widely.

Least Privilege

Compromise Containment. Identify the boundaries between system components of varying levels of

trust, and take action to contain the less trusted components. For example, use sandboxing, system call
�ltering, separate vi�ual machines, or distinct identities to introduce barriers to moving laterally from

one compromised component into another. Good so�ware con�guration and system design anticipates

that arbitrary system components may become compromised, and seeks to contain the damage.

Disable Unused Features. Enable only those features that are necessary and have an explicit use case.
This limits the a�ack su�ace, since many so�ware packages enable large numbers of features by

default. Other features can always be enabled in the future, as needs or use cases change.

mailto:jonmccune@google.com
https://en.wikipedia.org/wiki/Version_control
https://sre.google/books/
https://eclypsium.com/2020/04/02/enterprise-best-practices-for-firmware-updates/
https://en.wikipedia.org/wiki/Sandbox_(computer_security)

Credentials. Avoid use of bearer tokens, avoid transmi�ing clea�ext credentials, and enable

multi-factor authentication. This protects against adversaries who harvest credentials commi�ed to

revision control repositories, cookies or tokens via compromised client devices, and credentials

accidentally captured in debug logs.

Multi-pa�y controls. Use multi-pa�y controls so that a single person cannot unilaterally destroy or leak

data, or maliciously modify the state of critical systems. Pay pa�icular a�ention to highly privileged

operations, accidental and malicious actions, and compromised or stolen devices.

Audit and Noti�cation. Privileged operations should generate an audit record and noti�cation to other

administrators. This can ale� responders when a compromised account takes an unexpected action, or

when a risky action may be unavoidable, such as responding to an unanticipated incident. Ensure that
logs are write-once to the systems generating the log data, so that a compromise cannot lead to

destruction or tampering with the log data. The audit trail can aid in post-mo�em forensics.

Encrypt. Encrypt data at-rest and in-transit. This both protects con�dentiality and ensures that
adversaries cannot inject malicious tra�c such as administrative commands. Con�dential Computing is

a new technology that also o�ers a layer of protection for data in use.

Root of Trust. Incorporate root-of-trust hardware into operating systems and management so�ware to

protect sensitive keys and represent ground-truth for system identity. This is the strongest available

signal that "this machine is one of ours". A�estation of so�ware and con�guration can con�rm that
systems are in the intended state while only having to trust a small fraction of the system as a whole.

Network Segmentation

Availability-only. Trust the network only for availability, and avoid systems that grant access to

resources simply by being connected to the network. In practice, there may be factors that still lead to

some network trust, such as legacy devices, third-pa�y so�ware or hardware that cannot be modi�ed,
but the overall a�ack su�ace is still reduced.

Limit reachability. Pa�ition networks so that the only permi�ed connectivity corresponds to an

explicitly named need. Do not allow internet access for systems that do not require it, and build explicit
processes around internet reachability to inhibit malicious data ex�ltration.

Proxy. Use a proxy between network segments whenever pe�ormance permits. This enables logging

and auditing, and can serve as a �rst line of defense for preventing tra�c matching known malicious

pa�erns when a new a�ack is discovered. The proxy can also enforce best practices, such as ensuring

that clients use h�ps even if some legacy servers internally might serve both h�p and h�ps.

Log and Monitor. Inspect tra�c to ensure that all in-use protocols are known, and that all encrypted

protocol types are actually encrypted. At high bandwidth, it will only be possible to do statistical
sampling, but it is still wo�hwhile. Where deep packet inspection is necessary, consider proxy designs

that do not have the keys necessary to violate packet integrity (as compared to con�dentiality).

https://en.wikipedia.org/wiki/Multi-party_authorization
https://confidentialcomputing.io/white-papers/
https://sflow.org/packetSamplingBasics/
https://sflow.org/packetSamplingBasics/

