

CERT/CC Comments on Standards and Guidelines to Enhance
Software Supply Chain Security (Questions 2-5)1

Corresponding author: Art Manion <amanion@cert.org>

For questions 2, 4, and 5, how will standards and guidelines apply to Free/Libre and Open Source
Software (FLOSS)?

2. Secure software development lifecycle practices
These four supplier2 practices reduce the risks associated with software vulnerabilities and other security
issues. These practices can be observed externally, thus supporting “attestation of conformity.”

2.1 Coordinated vulnerability disclosure

Suppliers should practice coordinated vulnerability disclosure (CVD). Despite the application of security
practices throughout the software development lifecycle (SDL), essentially all software is delivered with
as-yet-unknown security vulnerabilities. Therefore, suppliers must be able to respond effectively when
vulnerabilities are discovered. One form of CVD is a vulnerability disclosure program (VDP) as set out in
§4.e.viii of the E.O.3 and required by CISA Binding Operational Directive 20-01.4 A functional CVD or VDP
capability requires more than “...reporting and disclosure process[es],” it also includes triage,
investigation, analysis, reproduction, fix development, and communication management.5

2.2 Secure updates

In many cases, the solution to a vulnerability in fielded software is an update (patch, hotfix, upgrade).
Suppliers must be able to securely deliver updates to users. Assuring the authenticity and integrity of
updates is critical. As demonstrated by incidents like SolarWinds and NotPetya, adversaries target
software delivery and update mechanisms. Centralized update mechanisms also centralize risk. Suppliers
and developers should proactively mitigate the risk associated with a single, centralized secure update
mechanism. Suppliers should also enable users to control update deployment.

2.3 Supply chain transparency

Nearly all modern software systems depend on other software. Vulnerabilities in upstream dependencies
are nearly impossible to identify and track without knowledge of the supply chain. Software composition
analysis is a functional “after-the-fact” dependency detection method. A more efficient option is for
suppliers to provide software bills of materials (SBOM). An SBOM is a list of software components and
their dependencies.6 Government acquirers and users (including other suppliers) should require SBOMs
from their suppliers.

2.4 End of security support
Old software typically accumulates known vulnerabilities that may be fixed in newer releases.7 Security
support may end without users realizing it. Suppliers should provide information about when software
components and systems will no longer receive security updates. Either the end-of-support date or the
amount of notice the supplier must give before support ends should be provided at the time of acquisition.

1 https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/workshop-and-call-position-papers
2 We use “supplier” throughout as the entity providing a software component, system, or service to the government. A
supplier may also be a developer, vendor, maintainer, manufacturer, integrator, or service provider.
3 https://www.federalregister.gov/d/2021-10460/p-72
4 https://cyber.dhs.gov/bod/20-01/
5 https://vuls.cert.org/confluence/display/CVD/4.+Phases+of+CVD
6 https://www.ntia.gov/sbom
7 See https://libyear.com/ and https://ericbouwers.github.io/papers/icse15.pdf

Distribution Statement A: Approved for Public Release; Distribution Is Unlimited 1

mailto:amanion@cert.org
https://libyear.com/
https://ericbouwers.github.io/papers/icse15.pdf
https://www.ntia.gov/sbom
https://vuls.cert.org/confluence/display/CVD/4.+Phases+of+CVD
https://cyber.dhs.gov/bod/20-01/
https://www.federalregister.gov/d/2021-10460/p-72
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/workshop-and-call-position-papers

3. Federal government use of critical software
There is perhaps too much existing guidance for government administration and operation of software
systems.8 It is unclear if compliance is beneficial even if it is strictly followed.9 Review and consolidate
existing guidance. Consider material from NIST SPs 800-53 and 800-171 (possibly CMMC level 4) as
minimum requirements for the use of critical software.10

Incidents will occur, so agencies should have incident response capability,11 either in-house or on
contract. Some of this capability involves preparation and basic system administration practices that
facilitate incident response. Suppliers sometimes lock users out of basic administrative access to
products. License and contract terms may enforce lock-out. Lock-out may inhibit incident response by
creating dependency on the supplier to create file system images, decrypt diagnostic reports, access the
product remotely, or to perform other incident response tasks. Contracts that allow lock-out should require
rapid incident response support, even when many users are responding to incidents at the same time.

Agencies should perform vulnerability management. Asset management is a prerequisite for vulnerability
management (see also 2.3). Agencies should be able to notice new vulnerabilities, prioritize responses,12

and quickly13 apply updates or other mitigations.

Agencies should carefully consider the benefits and risks of acquiring new software and enabling
features.14 Operating less software and enabling fewer features reduces attack surface.

4. Testing software security
Grey-box fuzzing, which uses program instrumentation to compute code coverage and detect when new
areas of the software are exercised, has been shown to be effective at both discovering security
vulnerabilities and generating test corpora that exercise a broad range of software functionality.15 A variety
of implementations have shown grey-box fuzzing can be implemented at both the binary and source-code
level with relatively low performance overhead.16

Secure coding standards for a variety of programming languages exist, as do tools that analyze source
code for defects that may cause vulnerabilities.17 Because different tools and techniques are better at
identifying different types of defects, a consolidator tool should be used to merge results, collapse
duplicates, and reduce reevaluation of previously reported findings.18

5. Software integrity chains and provenance
Comprehensive knowledge of the composition of software systems (baseline SBOM as noted in 2.3) is
necessary but insufficient to provide high assurance of software supply chains.19 Integrity and
authentication (part of provenance) almost certainly require digital signatures and their accompanying
infrastructure, including strong identification of suppliers and other parties involved in the supply chains.
See Deliver Uncompromised: Securing Critical Software Supply Chains.20

8 NIST SPs 800-53, 800-61, 800-160, 800-161, 800-171; RMF; CMMC; CSF; FedRAMP; and FIPS to name a few
9 https://www.ndss-symposium.org/wp-content/uploads/2020/02/24003.pdf
10 https://www.acq.osd.mil/cmmc/draft.html
11 We suggest NIST SP 800-61 and the FIRST CSIRT Services Framework:
https://www.first.org/standards/frameworks/csirts/csirt_services_framework_v2.1
12 https://resources.sei.cmu.edu/asset_files/WhitePaper/2021_019_001_653461.pdf
13 For the 4% of vulnerabilities analyzed that had a public exploit, the median time to public exploit availability was 2
days: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644720
14 https://www.consumerreports.org/car-maintenance/does-your-car-need-undercoating/
15 https://www.fuzzingbook.org/
16 https://arxiv.org/abs/1812.00140
17 https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
18 Examples include Code DX, ThreadFix, and SCALe.
19 https://www.ntia.gov/files/ntia/publications/sbom_options_and_decision_points_20210427-1.pdf
20 https://www.mitre.org/sites/default/files/publications/pr-21-0278-deliver-uncompromised-securing-critical-software-supply-chains.pdf

Distribution Statement A: Approved for Public Release; Distribution Is Unlimited 2

https://www.mitre.org/sites/default/files/publications/pr-21-0278-deliver-uncompromised-securing-critical-software-supply-chains.pdf
https://www.ntia.gov/files/ntia/publications/sbom_options_and_decision_points_20210427-1.pdf
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://arxiv.org/abs/1812.00140
https://www.fuzzingbook.org/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=644720
https://resources.sei.cmu.edu/asset_files/WhitePaper/2021_019_001_653461.pdf
https://www.first.org/standards/frameworks/csirts/csirt_services_framework_v2.1
https://www.acq.osd.mil/cmmc/draft.html
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24003.pdf
https://Chains.20
https://chains.19
https://findings.18
https://vulnerabilities.17
https://overhead.16
https://functionality.15
https://features.14
https://software.10

