
Technical area 5: Guidelines for software integrity chains and provenance [EO Sections 4(e)(ii, vi, & viii)]

Assuring SW Supply Chains Against Indirect Attacks - An Evidence-based Approach
Partha Pal, Aaron Paulos, Rick Schantz

Raytheon BBN Technologies
{Partha.Pal, Aaron.Paulos, Rick.Schantz}@Raytheon.Com

Supply chain attacks are neither a surprise nor unprecedented. However, much has changed from the lifecycle

attacks (insertion of code that would activate at a certain time or under certain conditions) of the 1990s. A 2013

MITRE report [1] provided a holistic view of supply chain attacks and a framework for supply chain risk

management (SCRM) as part of system security engineering (SSE) together with prevalent attack patterns and

potential approaches for assessing malicious insertion in critical components of DoD systems being acquired or

sustained. The framework covered the entire end-to-end supply chain for DoD systems, starting from primary

hardware and software developers to the Program Office. The attacks considered in the report directly injected

code or data into the system of concern and originated at technical and engineering personnel directly involved

in the process (in other words, insiders). In contrast, in this paper, we limit ourselves to software products (i.e.,

binary releases) and narrowly focus on the supply chain segment that starts with source code and ends with the

signed binary as a released product, and emerging threats of the kind highlighted by the SolarWinds incident.

The complexity of the software development process has grown as the length and complexity of the modern

software stack has grown. In addition to multiple layers and complex dependencies, modern configuration

management and build systems like Maven and Gradle combine written code with code imported from external

repositories. The percentage of imported code compared to code custom written for a DoD system has gone

down significantly. CI/CD and DevSecOps make the software production process even more dynamic,

demanding a faster requirement-to-release turnaround. This has widened the possibility of indirect supply chain

attacks: in order to compromise a product A, the adversary no longer has to be directly involved with the

development or production of A, nor does he need to inject code or data into A directly. Attacks of this sort have

happened before (e.g., attacks on Github to compromise Linux [2] [3], which could be used to attack software

running on Linux). Proof of concept attacks [4] demonstrated the use of naming collision to import malicious

external libraries. The SolarWinds incident demonstrated the scope and range of damages such indirect attacks

can unleash, and highlighted the utter insufficiency of relying on code signing as the only measure of trust.

The 2021 Executive Order (EO) provides an opportunity to revamp the guideline for acceptance of software,

specifically binary releases. To complement the attention

paid to assurance/certification/validation of the software

product (which primarily concerns the product’s functions

and security properties), and the OPSEC of the development

enterprise (including the integrity of the software

development tools and environment), we take the position

that provenance of the binary release and the integrity of the

process that led to it must also be considered. Code signing

is not sufficient, because it fails to capture the history of the

events leading up to the release in a verifiable manner, and

certification still is resource heavy and time consuming.

Addressing the threat of indirect attacks on binary products accepted into federal systems of critical importance

require verifiable evidence that the released binary is the same one that was produced from approved sources

and passed required tests/analyses. Figure 1 illustrates the idea using a simplified assurance case. At a high

level, a signed binary B will ideally accompany linked evidence that assert claims like the following:

Figure 1: A simplified assurance case for provenance of the
software product and the integrity of its production process

Technical area 5: Guidelines for software integrity chains and provenance [EO Sections 4(e)(ii, vi, & viii)]

 The same B above was used in testing and analyses, and passed all the required tests and scans, and

 The same B above was produced with only approved imports I and committed source code C, and

 The C above includes only code that supports a specified requirement or change request.

As the assurance case structure shows, each node represents a claim about artifacts leading up to the binary

product. Only AND connectors are shown, but other connectors e.g., OR, ONE-OF are also possible. There are

multiple cases to consider about these claims. First, for some of these claims, we already have the means to

substantiate them. For example, user credentials, commit logs and MD5 sums can be used to assert the validity

of a source file, or test results can be used to assert that the tested binary passed the tests. Second, there are

cases where the evidence can be discerned with some additional, possibly manual, work. For example,

assessing source code with specified requirements and models can assert that the committed code does not

include anything outside of what is required. Documentation authorizing imports/external repositories and build

configuration can attest the validity of imports. Finally, there are cases where we currently lack enough

evidence. This situation may arise anywhere, but is critical for claims about lossy or one-way transformation of

artifacts, i.e., claims that link one or more input artifacts with one or more output artifacts, because these

transformations are key pieces of the provenance chain leading to binary product. Consider a simplified build

process that takes in a bunch of source files and produces a binary. How can we assert that the sources that

went into the build process were actually used to produce the binary that came out of it (SolarWinds software

was compromised in this manner)? Without this linkage, we can assert that the sources are all valid, and the

binary passes all the tests, but will miss the case that an indirect attack may have caused the build process to

use malware-laden shadow source file to build the binary instead of the original source that it took as input.

We thus organize our recommendation into two broad categories: State of Practice (SOP) and R&D. In the R&D

category, more work is needed to develop innovative means to assert claims about artifacts, including ways and

means to augment lossy/one-way artifact transformations to produce evidence as by-products, as well as

means to reduce regular/routine human involvement in assessment of claims. Software watermarking, compiler

technology and program analysis techniques can serve as jump-off points for generating machine-usable

evidence linked with artifacts generation and transformation. Block chain technology, with its zero-trust

framework for maintaining consistent transaction records can deter malicious actors attempting to insert corrupt

code and data, and at the same time offers a reliable parts tracking capability in support of the software

production process. In the SOP category, we recommend a progressively tiered approach (more stringent

evidence for more critical contexts), possibly starting with the status quo of relying on code signing for non-

critical software. As the criticality of the software rises, we should demand provenance of the binary and

evidence that the integrity of the process that produced the binary was not compromised. For some cases, an

audit trail that assigns ownership stakes to vendors and communities that export 3rd party sources and binary

may be sufficient. Some situations will be able to afford the time for manual checking. Some situations will call

for online (fast)/on-demand checking of the evidence. Time consuming manual evidence extraction and

checking is not consistent with the CI/CD and DevSecOps ideals, but the gradual approach we propose is likely

to face less resistance, and nicely augments the other techniques to mitigate the supply chain risk (e.g.,

securing the hardware and software tools, increasing the OPSEC of the vendors, making certification more

efficient etc.) being considered and new R&D capabilities we recommend.

References

1. J. F. Miller. Supply Chain Attack Framework and Attack Patterns. 2013
2. C. Campanu. Cannonical GitHub Account Hacked, Ubuntu Source Code Safe. ZDNet 2019
3. D. Goodin. Kernel.org Linux repository rooted in hack attack. The Register.2011.
4. A. Sharma. Researcher hacks over 35 tech firms in novel supply chain attack (in www.bleepingcomputer.com)

http://www.bleepingcomputer.com/

