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Amazon Web Services (AWS) appreciates the opportunity to submit the following comments to NIST in relation to 
the upcoming virtual workshop on Enhancing Software Supply Chain Security (June 2-3, 2021) related to the recent 
Executive Order (EO) on cybersecurity. AWS will address the five areas in three sections: Designating Software as 
“Critical” (Area 1), Secure Software Lifecycle (Areas 2, 4, and 5), and Secure Use of Critical Software (Area 3).  

Designating Software as “Critical” (Area 1) 

NIST faces a major challenge in the task of designating particular kinds of software as “critical.” So much of 
criticality of any kind of software from a security perspective — that is, from the perspective of confidentiality, 
integrity, and availability — depends on context. Something as simple as a putative advertisement-blocking 
browser extension being run inside the browser of a privileged user can wreak havoc on a critical back-end system. 
Conversely, a server-based network monitoring and management tool deployed by a government agency in its 
network may not be “critical” if utilized with no outbound Internet access and read-only access to the network 
configuration of otherwise sensitive systems. Because so much depends on context — the business impact of the 
system, the threat model, and the resulting risks — it seems impossible to designate particular types of software as 
“critical” in the abstract. NIST should introduce some elements of threat and/or risk analysis into the discussion of 
criticality in the context of operational scenarios and the overall systems environment where software will be used.  

Moreover, unlike traditional software, cloud offerings are sold and operated "as a service" and not developed for 
license and deployment by customers. While ancillary elements such as SDKs and container images might be 
considered simply as software, the core value proposition of cloud technology — and the very reason why the EO 
frequently highlights the Government’s move to the cloud as enhancing security — is precisely the value of a full 
cloud service lifecycle, which extends far beyond secure software development to include crucially secure 
monitoring, operations, and frequent updating (as elaborated in the next section). Therefore, in the context of cloud 
services, any kind of "criticality" analysis cannot be based simply on software categories or usage concepts.  

Secure Software Lifecycle (Areas 2, 4, and 5) 

NIST will no doubt receive solid input on the software development lifecycle as that is typically understood. The 
systems, sources, processes, and people involved in software development must be considered holistically, with 
each element contributing to the security of the resulting artifacts. For example, above and beyond aspects that are 
unique to software development, all of the recommendations and feedback on Area 3 (Secure Use of Software) 
should be understood as applying reflexively to the software development process itself. That includes things like 
strong identity management and least-privileged access for both humans and software, zero-trust architecture 
concepts for defense in depth, and so forth. 

But the input received from other sources is likely to be incomplete. Even the phrases used by NIST in its request 
for position statements — “secure software development,” “testing software source code,” and “software integrity 
chains and provenance” — tend to limit the focus to software as a fixed artifact delivered by one entity and 
operated by another. What may be missing from the analysis is the full lifecycle of modern systems in which 
software is not the static result of a process, but only an important element of a full lifecycle for service delivery 
and update. In this highly dynamic world, often referred to as secure devs-ops, the constant feedback provided by 
operations results in a much different way of thinking about software and other aspects of overall system security.  

In a nutshell, a cloud service provider (CSP) like AWS in general does not provide software. We provide services. The 
services are composed of hardware, firmware, software and—most critically and uniquely—a full operational model 
and complete operational responsibility for the services. Our customers don’t pay us for delivering things (software 
artifacts), but for providing a highly available service environment they rely upon when building their own 
systems and operating models. As the operator of the systems we develop, we build them in a very different way 
than software built to be delivered to some other entity to operate. 

The “as a service” delivery of IT capability itself greatly enhances the confidentiality, integrity, and availability of 
the systems finally provided to customers. As discussed in detail in Appendix A (“Automating safe, hands-off 
deployments“), even the smallest changes to production systems are tested and monitored with extreme care, as 
experience has shown just how difficult it is to provide a service that is constantly being updated yet providing 
backwards compatibility as well as zero downtime. Cloud services are highly instrumented and carefully 
monitored by both automated systems as well as human operators. The 7/24/365 operational model of a cloud 



Page 2 of 12 

service means that, should any anomalies arise, human operators who are also software engineers—the very same 
engineers responsible for the writing the code in the first place—are available within minutes to examine, analyze, 
and remediate as necessary any anomalous behavior. This laser operational focus provides tremendous security 
benefits beyond the core focus on availability. Aspects of operations potentially impacting the other dimensions of 
security (confidentiality and integrity) are also tightly instrumented, controlled, and monitored.  

In sum, when considering matters related to the secure software development lifecycle, NIST should recognize that 
such considerations play a part in, but are by no means the same as, the full secure lifecycle of “as a service” IT 
models such as those provided by CSPs. Not only are hardware and firmware security also at issue, but most 
importantly operational considerations — instrumentation, monitoring, deployment practices, constant updating, 
human oversight, and speed of reaction to anomalies — play an equally if not more important role in the overall 
security of cloud services than traditional SDLC practices. This different operating model of the cloud is precisely 
why history tells us cloud is more secure and, therefore, why the EO embraces cloud as the more secure choice. 
Any new regulations should be crafted with an understanding of that difference, otherwise they may 
unintentionally impact the security of cloud services by treating them the same as software. 

Secure Use of Critical Software (Area 3) 

In this section, we assume that notion of “critical” software has been enhanced to focus not simply on the type or 
function of the software, but also the associated threats against, risks from, and possible mitigating circumstances. 
From this kind of analysis should flow prioritization of improvements, since not everything can be improved at 
once. With that background, here at a high level are some of the key concepts of “zero-trust” architectures in the 
context of cloud computing that reduce the risk of as well as the impact from the compromise of critical systems. 

To start, government agencies should use the software-defined nature of the cloud to create distinct shared-nothing 
partitions around each important workload. Examples include unique cloud accounts/tenants and/or unique 
software defined networks. While these partitions are not themselves sufficient, these boundaries create a straight-
forward outer layer defense within which finer-grain controls can operate. Within these boundaries, software 
deployments should be made through automated pipelines rather than manually (see Appendix A). Doing so 
allows for a number of security-specific benefits, including least-privilege access and separation of duties. Security 
tooling should then ‘trust, but verify’ the outcomes of these automated pipelines, using the transparency provided 
by cloud service APIs to inspect the real time security posture of the workload on both an event -based and 
periodic basis. 

Next, within and across these partitions, agencies should rethink traditional networking and identity controls, 
focusing on implicit deny systems. In other words, instead of starting with an open network that must be locked 
down, start with a micro-segmentation approach that denies by default and requires explicit authorizations for any 
access. In terms of identity, associate unique identities with each software component, and use those identities to 
strongly authenticate and authorize all service to service communications at the request layer on a per request 
basis. These network-centric and identity-centric controls should be aware of one another in order to drive policy 
based decisions to questions such as “should this compute resource, identified by this credential, be allowed to 
request data from this data source, when the request originates from this expected network segment, from within 
this expected cloud partition?” 

Third, when government agencies are designing operational scenarios, they should focus on keeping humans 
away, as much as possible, from direct access to systems and data. Develop tooling that allows only the minimum 
set of acceptable operations to mediate human access to systems and data. Baseline existing requirements for 
operator access and scan access logs and other sources actively for repeated actions that can and should be 
automated. Continuously assess the privilege delta between granted and utilized privileges and prune unnecessary 
privileges continuously. Apply appropriate friction, enhanced monitoring, and time bound conditions to any 
break-glass access mechanisms with equivalent (or superior) control rigor to primary channels. Use enhanced 
logging, observability data, and advanced analytics for active detection of anomalous behavior. When security 
events occur, use automation to remediate, enrich, route, or otherwise improve response to security notifications to 
optimize or obviate human operators.  

Critical software systems are likely to be compromised from time to time. Layers of identity-based and network-
based defenses can significantly decrease the impact of any such compromise by providing greater initial 
containment and more rapid detection and remediation. It’s also important to note that many of these techniques 
can be introduced gradually as part of an IT modernization effort. Used wisely, zero-trust concepts techniques can 
be applied to enhance the security of legacy software and systems not originally with them in mind. 
  



Page 3 of 12 

Appendix A 

The following article about how AWS does software deployments was published in June 2020. While not specifically focused on 
the security of such systems, the techniques described reflect both the reality of how modern zero-downtime service-oriented 
architectures are built and deployed, but also provides a number of indications and hints about how security considerations 
change and security capabilities increase in the full lifecycle of a rapidly-changing service. 

  

https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/  

Automating safe, hands-off deployments 

By Clare Liguori 

When I interviewed for my job at Amazon, I made sure to ask one of the interviewers, “How often do you deploy 
to production?” At the time, I was working on a product that rolled out a major release once or twice a year, but 
sometimes I needed to release a small fix in between big releases. For each fix that I released, I spent hours carefully 
rolling it out. Then I frantically checked logs and metrics to see if I had broken anything after the deployment and 
needed to roll it back. 

I read that Amazon practiced continuous deployment, so when I interviewed, I wanted to know how much time I 
would have to spend managing and watching deployments as a developer at Amazon. The interviewer told me 
that changes were automatically deployed to production multiple times a day by continuous deployment pipelines. 
When I asked how much of his day was spent carefully shepherding each of those deployments and watching logs 
and metrics for any impact as I had been doing, he told me usually none. Because the pipelines did this work for 
his team, most deployments weren’t actively watched by anyone. “Whoa!” I said. After I joined Amazon, I was 
excited to find out exactly how these “hands-off” automated deployments worked. 

Safe continuous deployments at Amazon 

Since then, I’ve seen first-hand the way that Amazon sets up continuous deployment pipelines to help us deploy 
quickly and safely. I came to appreciate how our continuous deployment safety practices free up developer time 
from work on deployments. When I push production code into the main branch of my service’s source code 
repository, usually I forget about it and go on to my next task, while my team’s pipeline takes over getting that 
change into production. The release of my code change to a production service is fully automated by the pipeline, 
which means that the last time I or any other developer touches or reviews a piece of code is when it is merged into 
the source code repository. 

My team set up that pipeline with automated steps that deploy our changes safely to production so we don’t have 
to watch each deployment. The pipeline runs the latest changes through a set of tests and deployment safety 
checks. These automated steps prevent customer-impacting defects from reaching production and limit the impact 
of defects on customers if they do reach production. As a developer, I’m able to trust that the pipeline will 
cautiously and safely deploy my change to production for me, without the need for me to actively watch it. 

The journey to continuous delivery 

Amazon didn’t start out practicing continuous delivery, and developers here used to spend hours and days 
managing deployments of their code to production. We adopted continuous delivery across the company as a way 
to automate and standardize how we deployed software and to reduce the time it took for changes to reach 
production. Improvements to our release process built up incrementally over time. We identified deployment risks 
and found ways to mitigate those risks through new safety automation in pipelines. We continue to iterate on the 
release process by identifying new risks and new ways of improving deployment safety. To learn more about our 
journey to continuous delivery and how we continue to improve, see the Builders’ Library article Going faster with 
continuous delivery. 

The four pipeline phases 

In this article, we walk through the steps a code change goes through in a pipeline at Amazon on its way to 
production. A typical continuous delivery pipeline has four major phases—source, build, test, and production 
(prod). We’ll dive into the details of what happens in each of these pipeline phases for a typical AWS service, and 
provide you with an example of how a typical AWS service team might set up one of their pipelines. 

https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/
https://aws.amazon.com/builders-library/going-faster-with-continuous-delivery/
https://aws.amazon.com/builders-library/going-faster-with-continuous-delivery/
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Source and build 

The following diagram gives you an overview of the sources and build steps you might find in typical AWS service 
team pipelines. 

 

Pipeline sources 

Pipelines at Amazon automatically validate and safely deploy any type of source change to production, not only 
changes to application code. They can validate and deploy changes to sources such as website static assets, tools, 
tests, infrastructure, configuration, and the application’s underlying operation system (OS). All of these changes are 
version controlled in individual source code repositories. The source code dependencies, such as libraries, 
programming languages, and parameters like AMI IDs, are automatically upgraded to the latest version at least 
weekly. 

These sources are deployed in individual pipelines with the same safety mechanisms (like automatic rollback) that 
we use for deploying application code. For example, configuration values for a service that can change at runtime 
(like API rate limit increases and feature flags) are automatically deployed in a dedicated configuration pipeline. 
Source changes are automatically rolled back if they cause any issues in production for the service (such as failures 
to parse a configuration file). 

A typical microservice might have an application code pipeline, an infrastructure pipeline, an OS patching 
pipeline, a configuration/feature flags pipeline, and an operator tools pipeline. Having multiple pipelines for the 
same microservice helps us deploy changes to production faster. Application code changes that fail integration 
tests and block the application pipeline don’t affect other pipelines. For example, they don’t block infrastructure 
code changes from reaching production in the infrastructure pipeline. All the pipelines for the same microservice 
tend to look very similar. For example, a feature flags pipeline uses the same safe deployment techniques as the 
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application code pipeline, because a bad feature flag configuration change can have an impact on production just as 
a bad application code change can. 

Code review 
All changes going to production start with a code review and must be approved by a team member before merging 
into the mainline branch (our version of “main” or “trunk”), which automatically starts the pipeline. The pipeline 
enforces the requirement that all commits on the mainline branch must be code reviewed and approved by a 
member of the service team for that pipeline. The pipeline will block any unreviewed commits from being 
deployed. 

With fully automated pipelines, the code review is the last manual review and approval that a code change receives 
from an engineer before being deployed to production, so this is a critical step. Code reviewers evaluate the code’s 
correctness and also evaluate whether the change can be safely deployed to production. They evaluate whether the 
code has sufficient tests (unit tests, integration tests, and canary tests), whether it is sufficiently instrumented for 
deployment monitoring, and whether it can be safely rolled back. Some teams use a custom checklist like the one in 
the following sample, which is automatically added to each of the team’s code reviews to explicitly check for 
deployment safety concerns. 

Example code review checklist 
 

1 ## Testing 

2 [ ] Did you write new unit tests for this change? 

3 [ ] Did you write new integration tests for this change? 

4  

5 Include the test commands you ran locally to test this change: 

6 ``` 

7 mvn test && mvn verify 

8 ``` 

9  

10 ## Monitoring 

11 [ ] Will this change be covered by our existing monitoring? 

12 (no new canaries/metrics/dashboards/alarms are required) 

13 [ ] Will this change have no (or positive) effect on resources and/or limits? 

14 (including CPU, memory, AWS resources, calls to other services) 

15 [ ] Can this change be deployed to Prod without triggering any alarms? 

16  

17 ## Rollout 

18 [ ] Can this change be merged immediately into the pipeline upon approval? 

19 [ ] Are all dependent changes already deployed to Prod? 

20 [ ] Can this change be rolled back without any issues after deployment to Prod? 

 

Build and unit tests 

In the build stage, the code is compiled and unit tested. The build tools and build logic can vary from language to 
language and even from team to team. For example, teams can choose the unit test frameworks, linters, and static 
analysis tools that work best for them. In addition, teams can choose the configuration of those tools, such as the 
minimum acceptable code coverage in their unit test framework. The tools and types of tests that run will also vary 
depending on the type of code that is deployed by the pipeline. For example, unit tests are used for application 
code and linters are used for infrastructure as code templates. All builds run without network access to isolate the 
builds and encourage build reproducibility. Typically, unit tests mock (simulate) all their API calls to 
dependencies, such as other AWS services. Interactions with “live” non-mocked dependencies are tested later in 
the pipeline in integration tests. Compared to integration tests, unit tests with mocked dependencies are able to 
exercise edge cases like unexpected errors returned from API calls and ensure graceful error handling in the code. 
When the build is complete, the compiled code is packaged and signed.  



Page 6 of 12 

Test deployments in pre-production environments 
Before deploying to production, the pipeline deploys and validates changes in multiple pre-production 
environments, for example, alpha, beta, and gamma. Alpha and beta validate that the latest code functions as 
expected by running functional API tests and end-to-end integration tests. Gamma validates that the code is both 
functional and that it can be safely deployed to production. Gamma is as production-like as possible, including the 
same deployment configuration, the same monitoring and alarms, and the same continuous canary testing as 
production. Gamma is also deployed in multiple AWS Regions to catch any potential impact from regional 
differences.  

 

 

 

Integration tests 
Integration tests help us to automatically use a service just like customers do as part of the pipeline. These tests 
exercise the full stack end-to-end by calling real APIs running on real infrastructure in each pre-production stage 
for all meaningful customer scenarios. The aim of integration testing is to catch any unexpected or incorrect 
behavior of the service before deploying to production. 

While unit tests run against mocked dependencies, integration tests run against a pre-production system that calls 
real dependencies, validating the assumptions of the mocks about how those dependencies behave. Integration 
tests validate the behavior of individual APIs across different inputs. In addition, they validate full workflows that 
join multiple APIs like creating a new resource, describing the new resource until it is ready, and then using the 
resource. 

Integration tests run both positive and negative test cases, such as providing invalid input to an API and checking 
that an “invalid input” error is returned as expected. Some pipelines run a fuzz test to generate many possible API 
inputs and validate that they don’t cause any internal failures in the service. Some pipelines also run a short load 
test in a pre-production stage to ensure that the latest changes don’t cause any latency or throughput regressions at 
real load levels. 

Backward compatibility and one-box testing 
Before deploying to production, we need to ensure that the latest code is backward-compatible and can be safely 
deployed alongside the current code. For example, we need to detect whether the latest code writes data in a 
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format that the current code can’t parse. The one-box stage in gamma deploys the latest code to the smallest unit of 
deployment, such as to a single virtual machine or single container, or to a small percentage of AWS Lambda 
function invocations. This one-box deployment leaves the rest of the gamma environment deployed with the 
current code for some period of time, such as 30 minutes or one hour. Traffic doesn’t have to be specially driven to 
the one box. It can be added to the same load balancer or poll the same queue as the rest of the gamma 
environment. For example, in a gamma environment of ten containers behind a load balancer, the one box receives 
ten percent of the gamma traffic generated by continuous canary tests. The one-box deployment monitors canary 
test success rates and service metrics to detect any impact from the deployment or from having a “mixed” fleet 
deployed side by side. 

The following diagram shows the state of a gamma environment after new code has been deployed to the one-box 
stage but has not yet been deployed to the rest of the gamma fleet:  

 

 

 

We also need to ensure that the latest code is backward-compatible with our dependencies, for example if a change 
needs to be made across microservices in a specific order. Microservices in pre-production environments typically 
call the production endpoint of any services owned by another team, like Amazon Simple Storage Service (S3) or 
Amazon DynamoDB, but they call the pre-production endpoint of the service team’s other microservices in the 
same stage. For example, a team’s microservice A in gamma calls the same team’s microservice B in gamma, but it 
calls the production endpoint for Amazon S3. 

Some pipelines also run integration tests again in a separate backward-compatibility stage we call zeta, which is a 
separate environment where each microservice calls only production endpoints, testing that changes going to 
production are compatible with the code currently deployed in production across multiple microservices. For 
example, microservice A in zeta calls microservice B’s prod endpoint and the production endpoint for Amazon S3. 

For a description of strategies for writing and deploying backward-compatible changes, see the Builders’ Library 
article Ensuring rollback safety during deployments.  

Production deployments 
Our #1 objective for production deployments at AWS is to prevent negative impact to multiple Regions at the same 
time and to multiple Availability Zones in the same Region. Limiting the scope of each individual deployment 
limits the potential impact on customers from failed production deployments and prevents a multi-Availability-
Zone or multi-Region impact. To limit the scope of automatic deployments, we split the production phase of the 
pipeline into many stages and many deployments to individual Regions. Teams split regional deployments into 
even smaller-scoped deployments by deploying to individual Availability Zones or to their service’s individual 
internal shards (called cells) in their pipeline, to further limit the scope of potential impact from a failed production 
deployment. 

https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
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Staggered deployments 
Each team needs to balance the safety of small-scoped deployments with the speed at which we can deliver 
changes to customers in all Regions. Deploying changes to 24 Regions or 76 Availability Zones through the pipeline 
one at a time has the lowest risk of causing broad impact, but it could take weeks for the pipeline to deliver a 
change to customers globally. We have found that grouping deployments into “waves” of increasing size, as seen 
in the previous sample prod pipeline, helps us achieve a good balance between deployment risk and speed. Each 
wave’s stage in the pipeline orchestrates deployments to a group of Regions, with changes being promoted from 
wave to wave. New changes can enter the production phase of the pipeline at any time. After a set of changes is 
promoted from the first step to the second step in wave 1, the next set of changes from gamma is promoted into the 
first step of wave 1, so we don’t end up with large bundles of changes waiting to be deployed to production. 

The first two waves in the pipeline build the most confidence in the change: The first wave deploys to a Region 
with a low number of requests to limit the possible impact of the first production deployment of the new change. 
The wave deploys to only one Availability Zone (or cell) at a time within that Region to cautiously deploy the 
change across the Region. The second wave then deploys to one Availability Zone (or cell) at a time in a Region 
with a high number of requests where it is highly likely that customers will exercise all the new code paths and 
where we get good validation of the changes. 

After we have higher confidence in the safety of the change from the initial pipeline waves’ deployments, we can 
deploy to more and more Regions in parallel in the same wave. For example, the previous sample prod pipeline 
deploys to three Regions in wave 3, then to up to 12 Regions in wave 4, then to the remaining Regions in wave 5. 
The exact number and choice of Regions in each of these waves and the number of waves in a service team’s 
pipeline depend on the individual service’s usage patterns and scale. The later waves in the pipeline still help us 
achieve our objective to prevent negative impact to multiple Availability Zones in the same Region. When a wave 
deploys to multiple Regions in parallel, it follows the same cautious rollout behavior for each Region that was used 
in the initial waves. Each step in the wave only deploys to a single Availability Zone or cell from each Region in the 
wave. 

One-box and rolling deployments 
Deployments to each production wave start with a one-box stage. As in the gamma one-box stage, each prod one-
box stage deploys the latest code to one box (a single virtual machine, single container, or a small percentage of 
Lambda function invocations) in each of the wave’s Regions or Availability Zones. The prod one-box deployment 
minimizes the potential impact of changes on the wave by initially limiting the requests that are served by the new 
code in that wave. Typically, the one box serves at most ten percent of overall requests for the Region or 
Availability Zone. If the change causes a negative impact in the one box, the pipeline automatically rolls back the 
change and doesn’t promote it to the rest of the prod stages. 

After the one-box stage, most teams use rolling deployments to deploy to the wave’s main production fleet. A 
rolling deployment ensures that the service has enough capacity to serve the production load throughout the 
deployment. It controls the rate at which the new code is put into service (that is, when it starts serving production 
traffic) to limit the impact of changes. In a typical rolling deployment to a Region, at most 33 percent of the 
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service’s boxes in that Region (containers, Lambda invocations, or software running on virtual machines) are 
replaced with the new code. 

During a deployment, the deployment system first chooses an initial batch of up to 33 percent of boxes to replace 
with the new code. During the replacement, at least 66 percent of the overall capacity is healthy and serving 
requests. All services are scaled to withstand losing an Availability Zone in the Region, so we know that the service 
can still serve production load at this capacity. After the deployment system determines that a box in the initial 
batch of boxes is passing health checks, a box from the remaining fleet can be replaced with the new code, and so 
on. Meanwhile, we still maintain a minimum of 66 percent of capacity to serve requests at all times. To further limit 
the impact of changes, some teams’ pipelines deploy as little as five percent of their boxes at a time. However, then 
they do fast rollbacks, where the system replaces 33 percent of the boxes at a time with the previous code to speed 
up rollback. 

The following diagram shows the state of a production environment in the middle of a rolling deployment. The 
new code has been deployed to the one-box stage and to the first batch of the main prod fleet. Another batch has 
been removed from the load balancer and is being shut down for replacement. 

 

 

 

Metrics monitoring and auto-rollback 
Automated deployments in the pipeline typically don’t have a developer who actively watches each deployment to 
prod, checks the metrics, and manually rolls back if they see issues. These deployments are completely hands-off. 
The deployment system actively monitors an alarm to determine if it needs to automatically roll back a 
deployment. A rollback will switch the environment back to the container image, AWS Lambda function 
deployment package, or internal deployment package that was previously deployed. Our internal deployment 
packages are similar to container images, because the packages are immutable and use a checksum to verify their 
integrity. 

Each microservice in each Region typically has a high-severity alarm that triggers on thresholds for the metrics that 
impact the service’s customers (like fault rates and high latency) and on system health metrics (like CPU 
utilization), as illustrated in the following example. This high-severity alarm is used to page the oncall engineer 
and to automatically roll back the service if a deployment is in progress. Often, the rollback is already in progress 
by the time the oncall engineer has been paged and starts engaging. 

 

Example high-severity microservice alarm 

 

1 ALARM("FrontEndApiService_High_Fault_Rate") OR 

2 ALARM("FrontEndApiService_High_P50_Latency") OR 

3 ALARM("FrontEndApiService_High_P90_Latency") OR 

4 ALARM("FrontEndApiService_High_P99_Latency") OR 
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5 ALARM("FrontEndApiService_High_Cpu_Usage") OR 

6 ALARM("FrontEndApiService_High_Memory_Usage") OR 

7 ALARM("FrontEndApiService_High_Disk_Usage") OR 

8 ALARM("FrontEndApiService_High_Errors_In_Logs") OR 

9 ALARM("FrontEndApiService_High_Failing_Health_Checks") 

 

 

Changes introduced by a deployment can have an impact on upstream and downstream microservices, so the 
deployment system needs to monitor the high-severity alarm for the microservice under deployment and monitor 
the high-severity alarms for the team’s other microservices to determine when to roll back. Deployed changes can 
also affect the metrics of continuous canary testing, so the deployment system additionally needs to monitor for 
failing canary tests. To automatically roll back on all of these possible areas of impact, teams create high-severity 
aggregate alarms for the deployment system to monitor. High-severity aggregate alarms roll up the state of all of 
the team’s individual microservice high-severity alarms and the state of the canary alarms into a single aggregate 
state, as in the following sample. If any of the high-severity alarms for the team’s microservices go into the alarm 
state, all of the team’s ongoing deployments across all of their microservices in that Region automatically roll back. 

Example high-severity aggregate rollback alarm 
 

1 ALARM("FrontEndApiService_High_Severity") OR 

2 ALARM("BackendApiService_High_Severity") OR 

3 ALARM("BackendWorkflows_High_Severity") OR 

4 ALARM("Canaries_High_Severity") 

 

 

A one-box stage serves a small percentage of overall traffic, so issues introduced by a one-box deployment might 
not trigger the service’s high-severity rollback alarm. To catch and roll back changes that cause issues in the one-
box stage before they reach the rest of the prod stages, one-box stages additionally roll back on metrics that are 
scoped to only the one box. For example, they roll back on the fault rate of the requests that were served 
specifically by the one box, which makes up a small percentage of overall number of requests.  

Example one-box rollback alarm 
 

1 ALARM("High_Severity_Aggregate_Rollback_Alarm") OR 

2 ALARM("FrontEndApiService_OneBox_High_Fault_Rate") OR 

3 ALARM("FrontEndApiService_OneBox_High_P50_Latency") OR 

4 ALARM("FrontEndApiService_OneBox_High_P90_Latency") OR 

5 ALARM("FrontEndApiService_OneBox_High_P99_Latency") OR 

6 ALARM("FrontEndApiService_OneBox_High_Cpu_Usage") OR 

7 ALARM("FrontEndApiService_OneBox_High_Memory_Usage") OR 

8 ALARM("FrontEndApiService_OneBox_High_Disk_Usage") OR 

9 ALARM("FrontEndApiService_OneBox_High_Errors_In_Logs") OR 

10 ALARM("FrontEndApiService_OneBox_Failing_Health_Checks") 

 

In addition to rolling back on alarms defined by the service team, our deployment system can also detect and 
automatically roll back on anomalies in common metrics emitted by our internal web service framework. Most of 
our microservices emit metrics such as request count, request latency, and fault count in a standard format. Using 
these standard metrics, the deployment system can roll back automatically if there are anomalies in the metrics 
during a deployment. Examples of this are if the request count suddenly drops to zero, or if the latency or number 
of faults becomes much higher than normal. 

Bake time 
Sometimes a negative impact caused by a deployment is not readily apparent. It’s slow burning. That is, it doesn’t 
show up immediately during the deployment, especially if the service is under low load at the time. Promoting the 
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change to the next pipeline stage immediately after the deployment is complete can end up having an impact in 
multiple Regions by the time the impact surfaces in the first Region. Before promoting a change to the next 
production stage, each prod stage in the pipeline has bake time, which is when the pipeline continues to monitor 
the team’s high-severity aggregate alarm for any slow burning impact after a deployment is completed and before 
moving on to the next stage. 

To calculate the amount of time we spend baking a deployment, we need to balance the risk of causing a broader 
impact if we promote changes to multiple Regions too quickly versus the speed at which we can deliver changes to 
customers globally. We have found that a good way to balance these risks is for earlier waves in the pipeline to 
have a longer bake time while we build confidence in the safety of the change, and then for later waves to have a 
shorter bake time. Our goal is to minimize the risk of an impact that affects multiple Regions. Because most 
deployments are not actively watched by a team member, the typical pipeline’s default bake times are conservative 
and will deploy a change to all Regions in about four or five business days. Services that are larger or highly critical 
have even more conservative bake times and times for their pipelines to deploy a change globally. 

A typical pipeline waits at least one hour after each one-box stage, at least 12 hours after the first regional wave, 
and at least two to four hours after each of the rest of the regional waves, with additional bake time for individual 
Regions, Availability Zones, and cells within each wave. The bake time includes requirements to wait for a specific 
number of data points in the team’s metrics (for example, "wait for at least 100 requests to the Create API") to 
ensure that enough requests have occurred to make it likely that the new code has been fully exercised. During the 
entire bake time, the deployment is automatically rolled back if the team’s high-severity aggregate alarm goes into 
the alarm state. 

Though it’s extremely rare, in some cases an urgent change (like a security fix or a mitigation for a large-scale event 
affecting service availability) might need to be delivered to customers more quickly than the time the pipeline 
usually takes to bake changes and deploy. In these cases, we can dial down the pipeline’s bake time to accelerate 
the deployment, but we require a high level of scrutiny on the change to do this. For these cases we require the 
scrutiny of the organization’s Principal Engineers. The team must review the code change, as well as its urgency 
and risk of impact, with very experienced developers who are experts at operational safety. The change still goes 
through the same steps in the pipeline as usual, but gets promoted to the next stage more quickly. We manage the 
risk of a faster deployment by limiting the changes in flight in the pipeline during this time to allow only the most 
minimal code changes needed to address the current issue and by actively watching the deployments. 

Alarm and time window blockers 
The pipeline prevents automatic deployments to production when there is a higher risk of causing a negative 
impact. The pipeline uses a set of “blockers” that evaluate deployment risk. For example, automatically deploying 
a new change to prod when an issue is currently ongoing in the environment could make the impact worse or more 
prolonged. Before starting a new deployment to any prod stage, the pipeline checks the team’s high-severity 
aggregate alarm to determine whether there are any active issues. If the alarm is currently in the alarm state, the 
pipeline prevents the change from moving forward. Pipelines can also check organization-wide alarms, like a large-
scale event alarm that indicates whether there is a broad impact in another team’s systems, and prevents starting a 
new deployment that could add to the overall impact. These deployment blockers can be overridden by developers 
when a change needs to be deployed to prod to recover from a high-severity issue. 

The pipeline is also configured with a set of time windows that define when a deployment is allowed to start. 
When we configure time windows, we need to balance two causes of deployment risk. On the one hand, very small 
time windows can cause changes to pile up in the pipeline while the time window is closed, increasing the 
likelihood that any one of those changes in the next deployment will have an impact when the time window opens. 
On the other hand, very large time windows that go beyond regular business hours increase the risk of prolonging 
the impact from a failed deployment. During off-hours, it takes longer to engage the oncall engineer than during 
the day, when the oncall engineer and other team members are working. During regular business hours the team 
can be more quickly engaged after a failed deployment in case any manual recovery steps are needed. 

Most deployments aren’t actively watched by a team member, so we optimize the timing of deployments to 
minimize the time it takes to engage an oncall engineer, in case there is manual action required for recovery after 
an automatic rollback. Oncall engineers typically take longer to engage at night, on office holidays, and on 
weekends, so these times are excluded from the time windows. Depending on the usage patterns of the service, 
some issues might not surface for hours after the deployment, so many teams also exclude Fridays and late-
afternoon deployments from their time windows to reduce the risk of needing to engage the oncall engineer at 
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night or during the weekend after a deployment. We have found that this set of time windows enables a fast 
recovery even when manual action is needed, ensures less engagement with oncall engineers outside of regular 
working hours, and makes sure that a small number of changes is bundled together while the time windows are 
closed. 

Pipelines as code 
The typical AWS service team owns many pipelines to deploy the team’s multiple microservices and source types 
(application code, infrastructure code, OS patches, etc.). Each pipeline has many deployment stages for an ever-
increasing number of Regions and Availability Zones. This translates into a lot of configuration for the team to 
manage in the pipeline system, in the deployment system, and in the alarm system, and a lot of effort to keep up to 
date with the latest best practices and with new Regions and Availability Zones. In the last few years, we have 
embraced practicing “pipelines as code” as a way to more easily and consistently configure safe, up-to-date 
pipelines by modeling this configuration in code. Our internal pipelines as code tool pulls from a centralized list of 
Regions and Availability Zones to easily add new Regions and Availability Zones to pipelines across AWS. The 
tool also allows teams to model pipelines using inheritance, defining configuration that is common across a team’s 
pipelines in a parent class (like which Regions go in each wave and how long bake time should be for each wave) 
and defining all microservice pipeline configuration as a subclass that inherits all the common configuration. 

Conclusion 
At Amazon, we have built our automated deployment practices over time based on what helps us balance 
deployment safety against deployment speed. At the same time, we want to minimize the amount of time 
developers need to spend worrying about deployments. Building automated deployment safety into the release 
process by using extensive pre-production testing, automatic rollbacks, and staggered production deployments lets 
us minimize the potential impact on production caused by deployments. This means that developers don’t need to 
actively watch deployments to production. 

With fully automated pipelines, developers use code reviews to check their code and also to approve that the 
change is ready to go to production. After the change is merged into the source code repository, the developer can 
move on to the next task and forget about the deployment, trusting the pipeline to get their change to production 
safely and cautiously. The automated pipeline takes care of deploying continuously to production multiple times a 
day, while balancing safety and speed. By modeling our continuous delivery practice in code, it’s easier than ever 
for AWS service teams to set up their pipelines to deploy their code changes automatically and safely. 

 

Further reading 

For more information about how Amazon improves services’ security and availability while increasing customer 
satisfaction and developer productivity, see Going faster with continuous delivery 

For a description of strategies for writing and deploying backward-compatible changes, see the Builders’ Library 
article Ensuring rollback safety during deployments  
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