

Secure software development lifecycle standards
SDLC challenges and solutions have long existed. This is an area where guidelines exist and should
be followed but are simply not. The first most important requirement should be sound change control,
and this should be enforced by government, not by providers. It is simply too important to be left to 3rd

parties, and has costs that far exceed the ability of providers to provide. This is a national laboratory
level issue in R&D and an NSA issue in execution. Having said that, here is an outline of the standard
approaches that work when applied.1

Sound change control:

• Generically, the system includes separate areas with code only passing in one direction:

◦ R&D → Change control → Testing → Production.

◦ Failure at any step is indicated outside of the system along with the basis, and any
change/component failing along the way is rejected and not allowed to progress except
starting again at R&D.

• All changes (and components) should be specified with a justification for the change that is
accepted as necessary for the identified applications of the mechanism.

◦ This implies that all mechanisms should be identified as to their purpose and thus Trojan
horses or ‘spyware’ and similar intentionally embedded capabilities of the mechanisms
must be revealed openly as a basis for the inclusion of relevant code.

• All changes (and components) should only provide the mechanisms necessary to perform the
identified purpose.

◦ If they do other things, the changes (and components) should be rejected and the change
(component) not allowed to go into testing or production.

• Change control should include code review by automation and humans examining every step
in the context of the situation within the program and paths to and from the change, as well as
in the context of the overall system the component is intended to operate within.

◦ Individuals performing such review should have to identify and document what they did and
certify that they did it. They should be subject to random verification and audit, and any
failure to do what they said they did should be treated with an optional one-time warning,
and immediate termination from the change control process with no return. This is different
from imperfection in the carrying out of their tasks, which cannot be expected to be perfect.

• Only after a change is approved, it should be passed into testing. The test environment should
compile / interpret / execute the code independently of anything in the R&D environment other
than the actual change and prior accepted version.

◦ The test environment should have identified historical testing criteria, including regression
testing for all previous known fault types and failures resulting from them, and random and
other testing methodologies with defined coverage requirements over specified fault
models.

• Only after successful testing with regression for all prior known causes of failures and
additional testing with known coverage on test data, then samples from live data, can the
change be propagated into live systems.

◦ Deployment should provide the means to roll back to prior versions and content, or in
cases of forward-only deployments, be able to operate in a reduced mode with prior
versions in emergencies.

Fred Cohen – CEO – fc@all.net – please consider me as a speaker at the workshop 1

mailto:fc@all.net

Rolling deployments:

• With rare exception, deployments should be done in a rolling sequence, starting with the most
urgent and least important circumstances, then going to urgent important, then less urgent
more important, then to less urgent less important. The reason for this ordering is that the initial
deployment of changes often reveals problems not detected in change control due to
complexities and conditions of the operating environment that may differ from the test
environment. Urgent situations should be undertaken first, but it’s better to have negative
effects detected on less important situations first. After that, the sequence is naturally highest
overall priority to lowest.

• The size of deployments in the step-wise roll-out approach should be limited by risk
aggregation limitations specified in duties to protect and risk management. No single step of
the roll-out should exceed the risk aggregation threshold for the entity or its hierarchy (e.g., an
agency or the Federal government as a whole).

Inventory and provenance and attribution channels:

• Inventory is fundamental to effective control, and security inventory should be in place for all
systems, content, people, and business relationships. The inventory mechanisms identified in
the Standards of Practice along with relevant lifecycle controls, and all relevant elements of the
COP table should be used in this inventory system, which should be a system of records and
operated and maintained within the standards for archival and records management.

• The entire supply chain of software and systems should be supported by provenance
information and attestations as to source and path. Existing methodologies including SBOM
and DBOM may be immediately adopted as a path forward, with augmented mechanisms
applied over time.

Integrity controls:

• Integrity controls, particularly in the form of detecting unauthorized changes, should be applied
to all systems, content, and the entire software stack, from firmware through user coded
components, and at all levels in between. At a minimum, this should include cryptographic
checksums or hash functions and real-time prior to use detection of changes with proper
automatic responses based on requirements for operational modalities, including fail safe
modes and taking into account the different failures associated with ceasing operations and
continuing them under the loss of integrity based on detection. The detection mechanisms
themselves should be protected so as to eliminate all feasible methods of corrupting them,
which would produce outages caused by the integrity mechanisms themselves.

Additional areas in the EO:

• Authentication and authorization should be controlled based on risk aggregation limits of
individual responsibility and escalation of authentication (quantity and frequency of uses and
number and types of factors) based on the consequences associated with failures. Matching
surety to risk is the basic concept here.

• Providers to the Federal system should have uniform requirements for always providing and
updating artifacts demonstrative of conformance of all requirements, including those of their
dependent supply chain. This should be integrated into DBOM and SBOM or similar attestation
channels and audited with frequency and statistical requirements commensurate with the
consequences of failures. A failure to fulfill this requirement should lead to a limiter form of
disbarment or other similar level of punishment. These artifacts should be generated all the
time and not limited to periodic or upon request responses.

These are all standard approaches that should have been codified long ago. And they are now under
mandate for codification. Hopefully this will help.

