
Minimum Secure Software Development Testing
Requirements at Scale and Pace

A Position Paper submitted by
Dr. Malek Ben Salem, Technology Research Director, Accenture Security &

Chase Sylvester, Security Consulting Manager, Accenture Security
{malek.ben.salem,chase.sylvester}@accenture.com

NIST Workshop on Standards and Guidelines to Enhance Software Supply Chain Security, June 2nd-3rd, 2021

Abstract – Software attacks are growing in number due to
the complexity of applications, the increased usage of
unpatched and third-party software. To address these
threats and increase security in the software supply chain,
Accenture summarizes the minimal requirements for
testing software source code in this paper and identifies
best practices and innovations that organizations should
adopt to minimize their risk by scaling security.

INTRODUCTION

An organization’s software (SW) supply chain is
anything that goes into or affects the organization’s code,
including open-source code, cryptographic libraries, and
Integrated Development Environment tools. In this position
paper, we focus on the minimum requirements for testing
source code and list best practices that organizations need to
adopt to improve the results of their SW testing processes and
reduce their susceptibility to SW supply chain attacks.

Accenture believes that every organization should
follow a robust Secure Software Development Lifecycle
(SSDLC) model that includes security in every phase of the
development process. The process starts with threat modeling
and security stories to identify the business/mission use case
risks and ends with continuous monitoring, threat intelligence
assessment, and auto-remediation.

In the following section, we highlight the requirements
and steps most relevant to testing SW source code in various
phases of the SSDLC process based on Accenture’s
experience and innovations. We conclude the paper with
recommendations and best practices that organizations can
adopt to minimize their SW supply chain risk.

MINIMAL TESTING REQUIREMENTS

I. Pre-Commit Stage
In the pre-commit stage organizations should perform

the following assessments before each code commit:
• An architecture/design security assessment where a

threat model is performed to identify risks in the
architecture and design of the application. This security
review proactively identifies security issues in the
application’s architecture and prevents critical security
design flaws from entering the application’s software
supply chain. Tools such as IRIUSRisk [1] can help
organize and streamline application threat models.

• A user story assessment finds relevant security risks
and assigns a security acceptance criteria for each user

story through creation of a "Security Story”. Accenture
works with clients to implement automated security
story tagging of user stories as part of the development
lifecycle to reduce development time, provide secure
code frameworks for developers to use during code
development and bring awareness to developers
regarding key risks affecting the release. SAFECode
provides resources for setting security acceptance
criteria for user stories [2].

• A manual security code review with the developer’s
peers to identify potential security risks before code
commit: Resources such as OWASP’s security testing
guides and CERT’s Secure Coding standards can be of
use in this step [3]-[4].

II. Commit and Acceptance Stage
During the commit and acceptance stage, the source

code is integrated and deployed to a pre-production
environment. Several types of tests should be performed
in this step:

• Static Application Security Testing (SAST): SAST
tools scan the source code and locate security
vulnerabilities within it during the code build stage. The
exact line number when the security issue occurs is
identified and shared with the developers for
remediation. SAST tools vary in their ability to identify
all vulnerabilities. Leading organizations optimize time
and resources in this process, through triaging of the
discovered vulnerabilities to identify false positives.
Accenture’s AI/ML can automate the triaging process
and separate the exploitable vulnerabilities from false
positives. About 64% of security analysts’ time can be
saved by automating and scaling this step based on field
tests. Exploitability rankings can be added to prioritize
the vulnerabilities that need to be worked on first. It is
also possible to automatically remediate these issues
saving development time even further. In our work with
a global company, we proved that AI models can
automatically remediate 60% of Java vulnerabilities,
saving 5 hours of developer/tester time per
vulnerability on average.

• Static Composition Analysis (SCA): The SCA process
identifies vulnerabilities in open-source repositories
used by the application. This is a critical but often
neglected step as 98% of the codebases include at least
one open-source component according to a 2021 report

mailto:%7bmalek.ben.salem,chase.sylvester%7d@accenture.com

by Synopsys [5]. It is also critical to discover any
transitive dependencies in the codebase and environment
and evaluate the risks of these dependencies, including
vulnerabilities and licensing restrictions. Organizations
can subscribe to Github’s Dependabot alerts to learn
about repositories impacted by a newly discovered
vulnerability based on the dependency graph and GitHub
Advisory Database [6]. They can also use Dependabot
security updates to patch the vulnerabilities [7].

• Dynamic Application Security Testing (DAST): This
is a blackbox test which identifies vulnerabilities in an
application’s production-like environment. It is effective
in finding externally visible issues in Web applications.
However, it does not scan all the source code as it cannot
cover more complex flows requiring dynamic data.
Accenture is developing automated mitigation
capabilities based on the findings of DAST scans, where
the configurations of WAF and RASP tools are
automatically updated to mitigate vulnerabilities in a
timely manner. A critical key to the success of this
strategy is having a pre-production environment that is
configured exactly like the production environment.

• Interactive Application Security Testing (IAST): Like
DAST, IAST occurs while the application is running in
the staging environment. IAST can identify the line of
code causing security issues just like SAST, but unlike
SAST, it runs during the post-build stage. Because it
combines DAST and SAST techniques, IAST can
eliminate many false positives, while pinpointing to the
exact location of the vulnerability in the source code.

• Infrastructure As Code, Container and Cloud
Testing: Container images and infrastructure are
relatively new, but critical, components of the SW
supply chain. Accenture creates and reuses automation
playbooks across clients to actively identify critical
security configuration issues and risks that scale to
thousands of systems. When combined with auto-
remediation, years of manual assessment time and
hours of development time are saved, and security
risks take seconds to fix. Useful tools include Chef,
Puppet, Ansible, SaltStack, Terraform, Nessus, NMAP,
and CIS Benchmark Tests.

• API/Web Application Security Fuzzing: Fuzzing is a
blackbox testing technique that identifies security risks
focused on the OWASP Top 10 most common security
vulnerabilities. Popular automation tools include
POSTMAN Collection Runner [8], SOAPUI [9]
OWASP ZAP, BurpSuite Pro and SQLMAP.

• Penetration Testing: Manual Penetration testing should
be performed by an ethical hacker in pre-production and
production environments to identify the most active and
urgent security issues. Kali Linux has a library of
industry standard tools for this testing [10]. Intelligence-
driven penetration testing can improve the quality and
consistency of the testing done.

RECOMMENDED BEST PRACTICES

Besides the minimal requirements listed in the previous
sections, Accenture recommends that organizations adopt the
following best practices to minimize SW supply chain risk:
• Continuous scanning: Organizations should embrace a

continuous scanning approach in lieu of snapshot testing.
They can leverage an automated scanning
orchestration platform to execute the automated tests
as part of the software delivery pipeline. They need to
compare the results of these scans and measure progress
in business-relevant terms/KPIs. An orchestration
platform provides additional savings in time and testing
costs for the organization.

• Maintaining a SW Bill of Materials (SBOM): A
SBOM is an inventory of all the components included in
the application. This ensures the integrity of the SW
supply chain by tracking the “provenance” of each
component and maintaining signed builds. It is also
important to keep copies of validated good SW
components and require that your SW vendors provide a
detailed and regularly updated SW BOM.

• Testing 3rd AI tools: Testing 3rd components in a
codebase should include AI/ML-powered components.
The SBOM for such components should include
additional metadata, such as the training and testing
datasets for the ML model, the accuracy of the model’s
predictions and the environments they were tested in, etc.

CONCLUSION

The recent increase in SW supply chain attacks calls for more
stringent testing requirements of SW source code. In this
paper Accenture highlighted the minimal requirements to
secure SW source code and listed some best practices that
organizations should embrace. By being proactive at
addressing the SW supply chain threat, organizations can
reduce their risk and save development time while also
accelerating business objectives.

REFERENCES

[1] IRIUSRisk: https://www.iriusrisk.com/
[2] SAFECode: https://safecode.org/category/resource-secure-
development-practices/
[3] OWASP Top Ten: https://owasp.org/www-project-top-ten/
[4] SEI CERT: https://www.sei.cmu.edu/
[5] Synopsys 2021 Open Source Security and Risk Analysis Report:
https://www.synopsys.com/software-integrity/resources/analyst-
reports/open-source-security-risk-analysis.html?cmp=pr-sig
[6] GitHub Dependabot alerts:
https://docs.github.com/en/code-security/supply-chain-security/managing-
vulnerabilities-in-your-projects-dependencies/about-alerts-for-vulnerable-
dependencies
[7] Dependabot Security Updates:
https://docs.github.com/en/code-security/supply-chain-security/managing-
vulnerabilities-in-your-projects-dependencies/configuring-dependabot-
security-updates
[8] POSTMAN Collection Runner:
https://learning.postman.com/docs/running-collections/intro-to-collection-
runs/
[9] SoapUI – An API testing tool: https://www.soapui.org/
[10] KALI Linux: https://www.kali.org/

https://www.iriusrisk.com/
https://safecode.org/category/resource-secure-development-practices/
https://safecode.org/category/resource-secure-development-practices/
https://owasp.org/www-project-top-ten/
https://www.sei.cmu.edu/
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html?cmp=pr-sig
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html?cmp=pr-sig
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/about-alerts-for-vulnerable-dependencies
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/about-alerts-for-vulnerable-dependencies
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/about-alerts-for-vulnerable-dependencies
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/configuring-dependabot-security-updates
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/configuring-dependabot-security-updates
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/configuring-dependabot-security-updates
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/
https://www.soapui.org/
https://www.kali.org/

	Conclusion
	References

