ASSESSING THE QUALITY AND RELIABILITY OF THE DEA DRUG IDENTIFICATION PROCESS

Sandra E. Rodriguez-Cruz, Ph.D., ABC-F DEA Senior Research Chemist AAFS - February 16, 2017

INTRODUCTION

o Background:

- DEA laboratory system (8 labs; > 270 chemists)
- Tens of thousands reports per year
- Produce accurate and scientifically-supported results

Objective:

- Quantitative assessment of the reliability of the overall laboratory process
- Quality of laboratory results
- Confidence (or uncertainty) of reported identifications

DEA DRUG IDENTIFICATION PROCESS:

DEA LABORATORY ANALYTICAL SCHEME:

• Requires analysts to test, at minimum:

- Two portions
- Two different and independent techniques
- Use negative controls
- Use positive controls (traceable reference materials)

SWGDRUG Recommendations

o ASTM E2329

Standard Practice for Identification of Seized Drugs

DEA DRUG IDENTIFICATION PROCESS:

- Where can errors occur?
- Phase I
 - Sample swapping, wrong barcoding, etc.
- Phase II
 - Analysis, sample swapping, contamination, etc.
- Phase III
 - Report preparation, dissemination, etc.

UNCERTAINTY IN QUALITATIVE ANALYSIS:

Limited studies

• Past emphasis on quantitative analysis:

Measurement uncertainty

o References:

- S.L.R. Ellison, *Accred. Qual. Assur.* 5 (2000) 346-348.
- A. Pulido, I. Ruisanchez, R. Boque, F.X. Rius, Trend Anal. Chem. 22 (2003) 647-654.
- B.L. Milman, Trend Anal. Chem. 24 (2005) 493-508.

DEA PTP HISTORICAL DATA:

- o 2005-2016
- o 4746 test results
- 2392 inter-laboratory (24-27 PT rounds/year)
- 2058 intra-laboratory
- o 216 external
- o 80 blind

CLASSIFICATION OF PT RESULTS:

CALCULATING RESPONSE RATES:

$$TPR$$
 (sensitivity) = $\frac{True\ Positives}{All\ Positives} = \frac{TP}{(TP + FN)}$

$$TNR (specificity) = \frac{True \ Negatives}{All \ Negatives} = \frac{TN}{(TN + FP)}$$

$$FPR$$
 (Type I error) = $\frac{False\ Positives}{All\ Negatives} = \frac{FP}{(TN + FP)} = 1 - specificity$

$$FNR$$
 (Type II error) = $\frac{False\ Negatives}{All\ Positives} = \frac{FN}{(TP+FN)} = 1 - sensitivity$

RESULTS MATRIX:

		CS Reported				
		YES	NO	Total:		
CS Present	YES	4285	4	4289	0.99907	TPR (sensitivity)
CS Pro	NO	4	453	457	0.00875	FPR (type I error)
	Total:	4289	457	4746		
		0.00093	0.99125			
		FNR (type II error)	TNR (specificity)			10

ABOUT THE FALSE RESULTS:

o 4 False Positives:

- Sample swapping
- Low-level secondary CS reported w/o fulfilling QA and documentation requirements
- 2 incorrect CS reported (LIMS)

o 4 False Negatives:

- Sample swapping
- Low concentration of target CS
- 2 cases of low-level secondary CS

Synthetic cathinones

PRECISION AND ACCURACY:

Precision =
$$\frac{True\ Positives}{All\ Positives\ Results} = \frac{TP}{(TP + FP)}$$
$$= \frac{4285}{(4285 + 4)} = 99.90\%$$

Accuracy =
$$\frac{All \ True \ Results}{All \ Results} = \frac{TP + TN}{(TP + FP + TN + FN)}$$
$$= \frac{(4285 + 453)}{(4746)} = 99.83\%$$

PT / RESPONSE RATES RESULTS:

High sensitivity99.90%

High specificity99.12%

• Low *type I* error rate **0.87**%

• Low *type II* error rate 0.093%

• High *precision* 99.90%

High accuracy99.83%

13

Error Rates

USING BAYESIAN INFERENCE:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$Confidence$$

$$P(CS|+) = \frac{P(+|CS| \cdot P(CS))}{P(+)}$$

$$P(nCS|+) = \frac{P(+|nCS| \cdot P(nCS))}{P(+)}$$

$$P(nCS|+) = \frac{P(+|nCS| \cdot P(nCS))}{P(+)}$$

$$P(nCS|+) = \frac{P(+|nCS| \cdot P(nCS))}{P(+)}$$

14

CONFIDENCE IN THE POSITIVE ID:

- Probability CS <u>is</u> present, given a reported result
- Confidence in the positive identification result

UNCERTAINTY IN THE POSITIVE ID:

- Probability CS is <u>not</u> present, given a reported result
- Uncertainty in the positive identification result

ESTIMATING PRIOR PROBABILITIES:

- Population information
 - Which population?
- Historical data
- Prior knowledge
- Seizure circumstances
- Reasonable and supported assumptions

ESTIMATING PRIOR PROBABILITIES:

O No Information:

• P(CS) = P(nCS) = 0.50

O Prior Information:

- Statistics on laboratory submissions
- Field testing results
- Undercover purchase
- Smuggling operations (clan lab, POE)
- Identifying wrappings, markings, etc.

No Population Information:

P(CS) = P(nCS) = 0.50

Confidence =

$$P(CS|+) = \frac{P(+|CS) \cdot P(CS)}{P(+|CS) \cdot P(CS) + P(+|nCS) \cdot P(nCS)}$$

$$P(CS|+) = \frac{(0.99907)}{(0.99907) + (0.00875)} = 0.9913 = 99.13\%$$

No Population Information:

$$P(CS) = P(nCS) = 0.50$$

Uncertainty =

$$P(nCS|+) = \frac{P(+|nCS) \cdot P(peS)}{P(+|nCS) \cdot P(nCS) + P(+|CS) \cdot P(eS)}$$

$$P(nCS|+) = \frac{(0.00875)}{(0.00875) + (0.99907)} = 0.0086 = 0.86\%$$

ESTIMATING PRIOR PROBABILITIES:

O No Information:

• P(CS) = P(nCS) = 0.50

O Prior Information:

- Statistics on laboratory submissions
- Field testing results
- Undercover purchase
- Smuggling operations (clan lab, POE)
- Identifying wrappings, markings, etc.

DEA SUBMISSIONS & REPORTS:

Voor	Total	Laboratory Results		CC (0/)	NCC (9/)
Year		CS	NCS	CS (%)	NCS (%)
1994	37,115	32,779	4,336	88.32	11.68
1995	38,668	34,645	4,023	89.60	10.40
1996	43,662	38,836	4,826	88.95	11.05
1997	49,156	43,965	5,191	89.44	10.56
1998	55,946	49,919	6,027	89.23	10.77
1999	60,093	53,869	6,224	89.64	10.36
2000	64,608	57,840	6,768	89.52	10.48
2001	66,235	59,776	6,459	90.25	9.75
2002	64,504	58,065	6,439	90.02	9.98
2003	59,793	54,148	5,645	90.56	9.44
2004	56,709	50,973	5,736	89.89	10.11
Total	596,489	534,815	61,674	88.20-90.96	9.04-11.80
		(95% Confide	ence Interval)		

POPULATION: DEA LAB SUBMISSIONS

- P(CS) = 0.90
- > P(nCS) = 0.10

Confidence =
$$P(CS|+) = \frac{P(+|CS) \cdot P(CS)}{P(+|CS) \cdot P(CS) + P(+|nCS) \cdot P(nCS)}$$

$$P(CS|+) = \frac{(0.99907)(0.90)}{(0.99907)(0.90) + (0.00875)(0.10)}$$

$$P(CS|+) = 0.99902 = 99.90\%$$

POPULATION: DEA LAB SUBMISSIONS

- P(CS) = 0.90
- > P(nCS) = 0.10

Uncertainty =
$$P(nCS|+) = \frac{P(+|nCS) \cdot P(nCS)}{P(+|nCS) \cdot P(nCS) + P(+|CS) \cdot P(CS)}$$

$$P(nCS|+) = \frac{(0.00875)(0.10)}{(0.00875)(0.10) + (0.99907)(0.90)}$$

$$P(nCS|+) = 0.00097 = 0.097\%$$

CONFIDENCE/UNCERTAINTY:

P(CS)	P(nCS)	Confidence (%)	Uncertainty (%)
0.001	0.999	10.25	89.74
0.01	0.99	53.55	46.44
0.05	0.95	85.73	14.27
0.10	0.90	92.69	7.30
0.25	0.75	97.43	2.56
0.5	0.5	99.13	0.86
0.75	0.25	99.70	0.29
0.90	0.10	99.90	0.097
0.95	0.05	99.95	0.046
0.99	0.01	99.99	0.009
0.999	0.001	99.99	0.001

LIMITATIONS:

- Using PTP data:
 - Not a 'true' representation of routine submissions?
 - Analyst "knows" it is a test
- o 'True' sample identity not known
- No framework currently available
 - PTP data could be only data available to laboratories
- Prior probabilities (base rates) on the population
- Communicating approach to lay persons

CONCLUSIONS:

o PTP data provides means for assessing reliability of *overall laboratory drug identification process*.

O DEA laboratory ID process:

- High sensitivity and specificity
- Low type I and type II error rates
- High accuracy and precision

o Bayesian & population assessment:

High confidence & low uncertainty

• Valuable assessment:

Improving laboratory testing & QA procedures

ACKNOWLEDGEMENTS:

- Ramona S. Montreuil
 DEA Southeast Laboratory
- Mark E. McDonald, Richard P. Meyers, Scott R.
 Oulton, and Nelson A. Santos
 DEA Office of Forensic Sciences
- Jason A. Bordelon, Jaclyn A. Iera, James V. Malone
 DEA Southwest Laboratory
- Jack Mario
 NY Suffolk County Crime Laboratory retired
- Will Guthrie
 NIST

QUESTIONS?

o Thank You!

sandra.e.rodriguez-cruz@usdoj.gov