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Goals and Impact

• Beam time is valuable – limited access
• Single crystal spectrometry is slow and often 

redundant
• Want to take measurements more efficiently
• Software to be implemented on triple axis 

spectrometer
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Crystallography

Neutron Crystallography: Using neutron diffraction to study the properties of crystals

Diffraction:
• Neutrons scatter off nuclei
• Neutrons will constructively or 

destructively interfere
• Left with reciprocal space map
• Measurements give 

information about the “real 
space” through a Fourier 
transform
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Reciprocal Space



Miller Indices

Taking measurements:
• Miller indices (h, k, l) describe a plane
• Reciprocal of index is location along 

axis
• Researchers select planes to measure 
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Reinforcement Learning

Defined:
• Teaching a computer to make 

optimal decisions using rewards

How does it work? 
• The agent is in an environment 
• The environment returns a state
• Agent makes action based on state 
• Agent is rewarded after action 
• Algorithm learns how to best make 

actions based on rewards
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Policy Gradient 

What is a policy? 
• Algorithm chooses action based on policy function 
• Given a state, the policy returns a distribution of how probable each action is 

Optimizing policy: 
• Done through gradient ascent 
• Take derivative of function
• Gradually change parameters 

until it reaches the maximum



Applying RL to Crystallography 

Modeling the problem:
• Testing with a “toy problem” 
• Knows everything about the crystal except the z 

coordinate of one atom

How does this work with RL?
• State: Which Miller indices have been measured 
• Action: choosing an hkl to measure 
• Rewards: Certainty of z value, chi-squared, fewer steps 



Chi-squared by starting z value (40 hkls)

Application Challenges

Three main problems:
1. Fitter too dependent on starting z value 

fits on minimum chi-squared value 

Chi-squared by starting z value (5 hkls)



Application Challenges

Three main problems:
2. Do not want algorithm repeating measurements

applied mask of invalid actions
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Application Challenges

Three main problems:
3.    Large action space  test on dummy environment



Results 
Before After



Results 
Determining reinforcement learning success:

No decrease in number of steps until convergence Decrease in number of useless plane measurements



Future Steps

• Run with more episodes so algorithm can 
learn 

• Test on other algorithms 
• Move to more complicated test problem 
• Find permanent fitter (that handles more 

parameters)
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