
Refining a Markov Chain Monte Carlo Algorithm for
Fitting Neutron Reflectometry Data

Aaron Schankler

Haverford College

August 2016

Mentor: Paul Kienzle

Aaron Schankler (Haverford College) Refining a MCMC August 2016 1 / 15



Neutron reflectometry is an inverse fitting problem

Reflectivity is sensitive to the thickness and composition of layers in an
interface
Well understood but not reversible

Can calculate the expected reflectivity from a depth profile
Cannot calculate the depth profile from a reflectivity measurement

We build a parametrized model of the surface structure
Vary the parameters until expected reflectivity matches the data

(a) Depth profile (b) Reflectivity
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Markov Chain Monte Carlos can address inverse problems
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Markov chain Monte Carlos
(MCMC) are random algorithms
The chains accumulate a history
of many discrete steps
Can move “uphill” and escape
local optima

MCMCs are robust optimizers
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MCMC gives more information than just the optimum

Iain Murray, Neural Information Processing Systems

Confrence, 2015

After many steps, the chain’s
history reflects the probability
of a set of parameters

Can be used to determine
parameter correlation and
credible intervals

A longer run gives a more
precise result
Results are provably correct in
the limit
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MCMC often requires a “burn in” period

The starting values are often
not typical of values later in
the chain
They can distort statistics at
the end of a run
Discarding some initial samples
can eliminate this effect
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An automated test for burn in simplifies interpretation

A short burn in distorts results, while an overly long burn in is wasteful
Determining the correct amount of burn in requires user guesswork
Automated burn selection gives good results while simplifying the
fitting process

(a) Including burn in (b) First 3% removed (c) First 90% removed
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To determine the end of burn in we test for stationarity

In a converged chain, we expect the beginning to “look like” the end
Formally, we expect the distribution of the points to remain the same
Difficult to test in high dimensional search spaces

Instead we calculate the log probability of each point
This collapses points in many dimensional spaces into a single dimension
Testing for stationarity in a single dimension becomes tractable
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Formalizing distribution fit tests

(a) Normal PDF

(b) Normal CDF

We draw random subsets of
points to compare

Reduces autocorrelation
Reduces the power of the
test

Test for differences in
distribution by comparing
observed CDFs
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The DREAM sampler is an effective MCMC
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A population of many chains is
run simultaneously
Uses a differential evolution
algorithm to propose steps
Running multiple chains

Better explores the
parameter space
Preserves multimodal
systems
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DREAM does not perform well on all problems

In high dimensional problems the chains are too far apart to “mix”
effectively

Part of the curse of dimensionality
In these problems, chains reject almost all proposed points

(a) Good mixing, convergent fit (b) Bad mixing, stuck fit
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A test for stuckness

The test considers the variance within a chain, as compared to overall
variance

Low variability within a chain indicates a static chain
Many static chains indicates a stuck fit

If stuckness is detected, the algorithm can be changed to address it
For example, by using another optimization algorithm to bring chains
closer together
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A more robust variant of DREAM

An alternative to adaptively addressing stuckness is to use a more
robust algorithm
The literature describes the DREAM(ZS) algorithm, a variant of
DREAM which bases its steps off of the history of every chain
Reported to be more effective on multimodal fits and less prone to
outlier chains

(a) Fit with DREAM (b) Fit with DREAM(ZS)
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Multimodal search spaces present difficulties

The search can get temporarily
stuck in non-global optima

Called metastability
It is difficult to identify a
metastable chain

Non-optimal modes may not be
preserved

Other modes affect confidence
regions
DREAM can “tunnel” through
potential barriers revisit modes

Aaron Schankler (Haverford College) Refining a MCMC August 2016 14 / 15



Acknowledgements

This project would not have been possible without the support of my
mentor Paul Kienzle. I would also like to acknowledge the support of NCNR
SURF directors Joe Dura and Julie Borchers. The SURF program at the
NCNR is sponsored in part by the National Science Foundation through a
CHRNS (Center for High Resolution Neutron Scattering) grant.

Aaron Schankler (Haverford College) Refining a MCMC August 2016 15 / 15


