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Abstract

This paper presents an approach to a Real-Time Control System (RCS) systems engineering
methodology which complies with the RCS Reference Model Architecture developed by Robot
Systems Division researchers at the National Institute of Standards and Technology (NIST). We
also offer software implementation examples within the context of this RCS Methodology
approach. NIST has been conducting research in the area of hierarchical real-time control
systems for automation and robotics, for more than a decade. NIST researchers, working in the
Automated Manufacturing Research Facility (AMRF) and on a number of other agency projects,
have defined a theoretical reference model architecture as a first step in establishing a framework
for standards development. This paper represents a second step toward that goal.
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A Real-Time Control System Methodology for Developing Intelligent Control Systems

Richard Quintero
Robot Systems Division
National Institute of Standards and Technology

A. J. Barbera
Advanced Technology and Research Corporation

SECTION 1. INTRODUCTION

This paper presents a systems engineering methodology for developing complex, integrated,
intelligent machine control systems. We call it a Real-Time Control System (RCS) Methodology.
The particular systems engineering approach presented here was originated by Barbera and others
while he was with the Robot Systems Division at the National Institute of Standards and
Technology (NIST) in the late 1970's and early 1980's. The methodology complies with the RCS
Reference Model Architecture developed by Albus, Barbera and others at NIST [Al 89a, Al 89b).
We also offer "C" code examples of a software implementation developed using this RCS
Methodology. These examples are in Appendices A, B, and C. Researchers at NIST are
exploring several RCS implementation approaches in addition to this one. Each of these
approaches generally reflects the application used to demonstrate the researchers work and they
are typically optimized for a particular subclass of RCS applications.

Real-time intelligent machine control systems applications cover a very broad spectrum. For
example: 1) Controls engineers often deal with robotic or machine tool applications with
requirements for high-speed servo control of machines with multiple joints and/or several axis of
motion. These problems become even more interesting and demanding when real-time closed-
loop compensation is introduced to achieve very high accuracies or compliant motion. 2) Systems
engineers are interested in coordinating the control of several machines or in the case of large
vehicles (e.g., ships, submarines, aircraft) several major subsystems in order to accomplish a set of
desired system goals. Such systems usually require some degree of human interaction. Closed-
loop control is introduced in these applications in order to deal with uncertain and noisy input
data and in order to be able to function in unstructured environments. 3) At a higher level of
abstraction, systems engineers become concerned with the enterprise model in manufacturing,
traffic resource management in vehicle problems, or battle coordination in military applications.
Communications networks, human interface, and knowledge management receive increased
attention in these applications. Sensory-feedback is used in these applications for the same
reasons discussed above but at a higher level of abstraction.

In this paper we will be presenting a systems engineering methodology which can be used across
this spectrum of applications, however our examples and detailed discussion will emphasize the
middle level (type 2 above) and to a lesser extent the high level intelligent control systems
problems (type 3 above). There are many alternative implementation methodologies possible
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which could comply with the NIST RCS Reference Model. The kinds of applications which are
particularly well suited to the Barbera approach are typically rule driven (i.e., they employ
strategies, tactics, and process knowledge) and they are characterized by a need to monitor
sensory input to detect events in the intelligent system's environment which are used to trigger the
system's activities and its reaction to exception conditions. We will discuss, but not emphasize,
control systems problems dealing with path planning, trajectory generation and control law
algorithms (type 1 above).

1.1. Product Endorsement Disclaimer

References to specific brands, equipment, or trade names in this document are made to facilitate
understanding and do not imply endorsement by the National Institute of Standards and
Technology.

1.2. Background

The National Institute of Standards and Technology has been conducting research in the area of
hierarchical real-time control systems for automation and robotics for more than a decade. This
paper offers an initial attempt at formalizing a systems engineering methodology to compliment
the results achieved by NIST researchers in the Automated Manufacturing Research Facility
(AMRF) [Si 83] and on a number of other agency projects undertaken by the Robot Systems
Division (RSD).

Early work by Albus [Al 81] and Barbera [Ba 84], in the AMRF, gave rise to the first definition of
a Real-Time Control System (RCS) systems engineering approach focusing primarily on software
design. This approach was derived from a control systems engineering perspective rather than a
data processing perspective. The Robot Systems Division has refined and evolved these
techniques by applying the RCS approach to a number of robotic problems in manufacturing as
well as robotic applications intended for unstructured environments including the Army Field
Material-Handling Robot (FMR) project [Mc 86], the Defense Advanced Research Projects
Agency (DARPA) Multiple Autonomous Undersea Vehicles (MAUV) project [Al 88], the Army
Tech-based Enhancement for Autonomous Machines (TEAM) project [Sz 88], the U.S. Bureau
of Mines Coal Mining Automation Project [Al 89b], [Hu 92], and [Hu 91] as well as others.
Advanced Technology & Research Corporation (ATR) has used the RCS Methodology described
here in the implementation of control systems for a number of U.S. Postal Service materials
handling systems, employing monorail carriers, distributed staging towers, wire-guided vehicles,
conveyor sorting loops, and carousels, as well as other projects such as autonomous vehicles and
security systems.

One of the more well known NIST architecture definition efforts was the development of the
NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM)
[Al 89a]. NASREM was adopted by NASA to provide a software control system architecture
guideline for use by development contractors charged with building the Flight Telerobot Servicer
(FTS) control system as part of the Freedom Space Station project.



A number of versions of the NIST control system have been implemented (i.e. RCS-1, RCS-2 and
RCS-3) over the last ten years, with each version utilizing the most advanced "off-the-shelf"
hardware and software technologies available. RCS versions have been implemented using the
FORTH, C, and ADA languages and running on Motorola 68010/20/30 processors as well as on
Intel 286/386 machines and on Multibus and VME backplanes. Applications have been built using
real-time operating systems such as: GRAMPS, pSOS, and VxWorks. RCS applications have
also been hosted within the DOS operating system on personal computers (PCs).

The methodology presented in this paper is based on our most recent work in applying RCS
techniques to the automation of submarine maneuvering control, under DARPA sponsorship, and
in demonstrating the automation of a continuous coal mining machine, under the sponsorship of
the U. S. Bureau of Mines. This work is being carried out by a team of researchers from NIST
and ATR.

Even though we have achieved some measure of success in applying these techniques in a
research environment, acceptance of the RCS approach by industry has been slow to materialize.
Two things that can help to accelerate RCS technology transfer are the development of a formal
RCS systems engineering methodology and a comprehensive set of Computer-Aided Software
Engineering (CASE) tools based on the methodology. This paper addresses the methodology
issue.

1.3. Some Preliminary Definitions

This paper presents one possible software implementation approach which complies with the RCS
Reference Model Architecture (or referred to as simply the RCS Architecture). The
implementation approach, in turn, allows us to begin to define a complementary RCS
Methodology by offering implementation specific details necessary for understanding the
engineering trade-offs that must be considered as well as a basis for selecting certain software
engineering methods over others.

We will use the terms RCS, RCS Methodology and RCS Architecture interchangeably throughout
the remainder of this document for convenience. We will also generally make use of the words
"method" and "methodology” as synonyms even though a more rigorous definition of the word
"methodology" is a collection of methods.

The Random House College Dictionary, [Ra 82], defines architecture as "the character or style of
building; the structure of anything". The RCS Architecture is a style of building real-time
intelligent control systems. These systems generally include software, hardware, machines,
people, communications, information repositories, information/knowledge models and real-time
execution models. The RCS Architecture defines a highly structured, modular organization of
these control system components which can serve as a standard reference model for an open-
system architecture.

In describing RCS systems integration rules, we will use the term function to mean the
conceptual role, or activity prescribed for an abstract process. A function may or may not have a



one-to-one mapping to implementation code. Functions may be decomposed into subfunctions,
and some functions will be distributed across the RCS Architecture.

When we use the term module, we will be describing a software component capable of
performing one or more functions. A module has clearly defined input and output specifications
which are in compliance with the integration rules we will be enumerating. A module will also
have a one-to-one mapping to implementation code. Modules can be thought of as software
subprograms which can be assigned to and executed on a host Central Processing Unit (CPU).
Modules contain mechanisms for communicating with other modules, and they encapsulate
component specific knowledge and processes. Modules, therefore, are the building blocks with
which an integrated system can be built.

An atomic algorithm is defined here as a complete and self-contained algorithm which does not
easily decompose any further. Such an algorithm, when implemented in software, accepts input
parameters and generates output parameters in a single pass. A coded algorithm may execute
cyclically, and it may accumulate or otherwise retain the results of previous execution passes in
order to refine its outputs. A coded atomic algorithm does not contain any external branching, its
input/output (I/O) functions are always non-blocking, and it does not contain any indefinite
internal computing loops. An atomic algorithm is designed to be computed as sequential code on
a single CPU with a deterministic execution time. An atomic algorithm may be executed
concurrently with other atomic algorithms in a multiprocessor system. A module may encapsulate
any number of atomic algorithms.

Fiala [Fi 90a] defines an atomic unit as a complete and self-contained concurrent function that
communicates with other atomic units only by way of global data system communication
primitives (read and write). An atomic unit may also directly access sensors and actuators. A
module may contain any number of atomic units, but, by definition, an atomic unit cannot be
decomposed further into concurrent architectural elements. Fiala's definition of an atomic unit
would meet our definition of a controller module (defined below) which encapsulates the software
for an atomic algorithm.

We call your attention to the fact that we are intentionally using the term function to describe
processes which are called modules in earlier NIST RCS publications. Here we are reserving the
term module to describe a single RCS building block, a controller module. This is one of the
characteristics that distinguish the Barbera approach from other RCS Reference Model compliant
methodologies. A controller module does not contain any submodules, but it may encapsulate
any number of functions, subfunctions, processes, and atomic algorithms. The controller module
can be viewed as a systems integration "wrapper" which is implemented as a template. We
encapsulate software within this wrapper to ensure compliance with our integration rules. Every
module built using the controller module template will inherit a software execution model, a
communications mechanism, performance measurement capabilities, and debug mechanisms. All
of these properties will be discussed in detail in subsequent sections of this paper.

Appendices A, B, and C offer "C" code examples illustrating how the RCS Methodology
presented here is actually implemented in software.
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1.4, Preview

In Section 2 we discuss the intelligent machine problem domain, our objectives in defining an
RCS Methodology, and we describe the reference model architecture which is used as a
foundation for the RCS Methodology presented here. Section 3 defines a set of systems
integration and modularity rules we call the RCS tenets. These RCS tenets provide guidelines for
a systems engineer who wishes to use the Barbera approach to implement an intelligent control
system application in an manner consistent with the RCS Reference Model Architecture discussed
in Section 2. Section 4 defines the plan representation models we emphasize as part of this RCS
Methodology. Section 5 describes the RCS Controller Module Template and the RCS Main
Program, which constitute the basic building blocks for this RCS Methodology. Section 5 also
discusses the software services and hardware configuration required of a host computing
environment for implementing RCS. Section 6 presents a summary of the rapid prototyping
system development steps we use in developing intelligent control systems. Section 7 relates RCS
to some popular software engineering methods and presents our concluding remarks.

1.5. Acknowledgements

We would like to offer our thanks to our RCS development team colleagues, whose software
development work on the DARPA Submarine Automation Project and the Bureau of Mines
Mining Machine Automation Project, laid the foundation for this paper. Special thanks to NIST
development team members: Hui-Min Huang, Ron Hira, John Horst, Will Shackleford, Ross
Tabachow; and ATR team members: M.L. Fitzgerald, Phil Feldman, Clyde Findley, Nat
Frampton, and Mark Routson. In addition we gratefully acknowledge the many technical insights
offered by Jim Albus, John Michaloski, and John Fiala.



SECTION 2. THE RCS PROBLEM DOMAIN

RCS specifically addresses intelligent machine control systems problems. We define intelligent
machines to be machines designed to perform useful physical work while employing in situ
knowledge (sensory input data), and a priori knowledge, tactics and strategy. Intelligent
machines are further defined as utilizing feedback from the physical environment to manifest
"intelligent behavior" in real-time via computerized real-time control of the machine's electro-
mechanical actuators and sensors. Such systems are termed closed-loop control systems and are
distinguished from open-loop control systems in that open-loop systems do not have the capacity
to alter their behavior in real-time based on sensory feedback from the environment.

The definition given above for intelligent machines is intended to include: automation systems
such as those found in manufacturing, materials processing, mining and construction; embedded
systems such as military cruise missiles, torpedoes and other semi-autonomous devices; and
robotic systems ranging from factory floor robots to space vehicles and planetary exploration
robots.

In general, practical intelligent machines almost always require some level of human interaction.
Such interaction can range from intensive man-in-the-loop systems to human supervised semi-
autonomous systems. In some cases these systems can be fully autonomous after initialization and
employment or launch, such as in the case of some cruise missiles, torpedoes and space vehicles.

2.1. RCS Methodology Objectives

In priority order, our objectives in developing RCS are to:

1) Improve human understanding of the design result. As computers and software tools
evolve and become more sophisticated, it becomes increasingly important to ensure that we
are able to teach people to develop, extend and maintain real-time control systems using
standard techniques. This is particularly apparent when undertaking very large development
efforts requiring teams of engineers over development life cycles of several to many years.
Our designs must not only communicate with the original developers, they must also be
understood by those charged with enhancing and maintaining these systems over their full life
cycle. In this context, human understanding of the design overrides the importance of
developing software that executes efficiently on any given computer platform using any
particular set of software languages, operating systems or tools.

2) Manage software complexity. The problem of managing software complexity is directly
related to improving human understanding of the design. In fact, managing complexity is a
technique for achieving improved understandability. Complexity management generally
implies organizing information in a modular form easily understood by people. When
managing the complexity of large systems, we need to establish systems integration standards
as a useful technique in organizing the contributions of teams of developers. Creating well
understood primitive (reusable) modules which can be pieced together using the established
integration rules to form macro structures or subsystems is another powerful approach. An
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extension of this technique is to generalize repeating patterns of primitive building blocks and
use these patterns as templates to create new instances of application-specific system modules.
Often complexity management involves a trade-off between imposing some level of overhead
structure and achieving a very streamlined (efficient) design for a specific application (also
known as a point solution).

3) Provide for robust, verifiable, efficient, coordinated, real-time performance. We
would like our designs to result in control systems that are: a) robust - systems that can
function in the presence of noise, systems that can tolerate minor errors in knowledge
modeling, and fault tolerant systems that exhibit graceful degradation; b) verifiable -
deterministic systems whose intelligent behavior can be completely analyzed and verified, and
whose execution time performance can be reliably predicted by calculation or direct
measurement; c) efficient - designs that provide reasonable techniques for conserving
resources, d) coordinated - designs that specifically address and model concurrent execution
and coordinated multi-actuator machine behavior; e) real-time performance - designs that
specifically address the need to compute solutions in time to be effective given the physical
demands of the application.

4) Provide for extensibility, portability, and software reuse. a) Exfensibility - We are
interested in producing designs that can be easily extended. It is important to allow large
systems to be developed using an evolutionary approach, adding functionality to address new
requirements not envisioned in the early life cycle phases. b) Portability - As hardware
technology evolves we want to take advantage of more powerful and efficient platforms by
porting software to new computers with minimal recoding. c) Software Reuse - Lastly we
would like to collect libraries of software modules and software subsystems which can be
reused in similar applications. Some examples of such reusable software are software
templates, algorithms which compute common mathematical functions, algorithms for
computing different types of trajectories, algorithms for interpreting and updating computer
files using standard computer information models (e.g., geometric models, maps, A* search,
quadtrees, etc.), and software device drivers which link specific hardware devices to many
different software applications.

A Robot Systems Division position paper entitled, "A Reference Model Architecture for
ARTICS", [Al 91a], provides an in-depth discussion of the issues raised above.

2.2. RCS Methodology Approach

Developing an RCS Methodology involves: 1) establishing a comprehensive set of integration
rules, 2) identifying information models and real-time software execution models which explicitly
highlight critical components of the RCS problem domain (intelligent machine control systems),
and 3) selecting software engineering implementation techniques which are compatible with the
integration rules, the models and the RCS Methodology objectives presented above. Figure 1
provides a pictorial summary of these ideas. In Figure 1, there are two major divisions of the
architecture models - software and hardware. The software models include information models
and execution models to be described in more detail later in this document. The hardware



architecture includes all of the people, machines, sensors, actuators, and computing hardware as
well as a communications network. The critical design components to be explicitly addressed
include:

- real-time task behavior and software execution models

- interfaces and communications methods between software modules, hardware resources and
human operators

- information models and knowledge base management

- allocation of resources (assignment of software modules to computing hardware)

- rules for decomposing the design spatially and temporally
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2.3. The RCS Architecture Reference Model

The RCS Methodology described in this paper complements and is based upon the theoretical
RCS Architecture principles developed by Albus, Barbera and other NIST researchers, since the
mid 1970s. A comprehensive treatment of the RCS Architecture is contained in the following
publications: [Al 91b], [Al 90a], [Al 90b], [Al 89a], [Al 81}, [Ba 84]. We will present a brief
summary of those concepts here.
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2.3.1. Closed-Loop Control in an Intelligent Machine

Figure 2 presents a conceptual view of an intelligent machine. Such a machine employs actuators
with which it can manipulate objects or materials in the environment. The machine also possesses
sensors to monitor the current status of the environment, the effect it is having on the
environment as a result of its actions, and the internal state of the machine itself as it performs its
functions. An intelligent machine must possess a model of the world it lives in, in order to
interpret the information it senses and the effect of its real-time behavior on things in the
environment. A closed-loop control system is formed in the machine by inputting sensory data to
Sensory Processing (SP), passing the processed information off to the World Modeling (WM)
function, which maintains the machine's best estimate of the state of its world, and finally closing
the loop through Behavior Generation (BG) which plans and executes actions to be performed
through the machine's actuators.

In earlier NIST architecture reference model documents (NASREM, etc.) the Behavior
Generation function was called the Task Decomposition (TD) function. In this document we
group the subfunctions comprising (TD) and label them Behavior Generation (BG). The term
task decomposition is used here to refer to the design process used in developing an RCS
application.



An intelligent machine must also utilize a value system in order to judge the "goodness" of the
results of its actions in the context of the tasks it is expected to perform. The value system, or the
Value Judgment (VJ) function, works in conjunction with goal selection to direct Behavior
Generation in selecting alternative plans and actions. The value system and goal selection
functions are generally thought of as existing within the basic SP, WM, and BG functions.
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Figure 3.
2.3.2. The RCS Hierarchy

Figure 3 extends the notion of an intelligent machine design containing the basic SP, WM and BG
functions by creating a hierarchy. It shows an example NASA FTS robot structure arranged in
hierarchical levels. In order to enhance human understanding and to manage software complexity,
the basic SP, WM, and TD (or BG) functions are grouped as controller nodes and distributed in a
hierarchically organized, integrated set of nodes. In an RCS implementation a node is a collection
of one or more software modules. Each controller node is assigned a set of tasks at an
appropriate level of abstraction and each has a limited range of authority and responsibility within
the chain-of-command formed by the RCS hierarchy (much like a human military command
structure would be organized). Later in this paper we will discuss how to create templates for
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controller modules (controller nodes implemented as modules or subprograms) to use as a basic
building block for RCS designs.
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Figure 4.
2.3.3. RCS Levels of Abstraction

Figure 4 depicts the temporal decomposition of an RCS design where in each level deals with
planning horizons, memory spans and goal completion rates which are subdivided by roughly an
order of magnitude in time between levels. Planning horizons and memory spans increase as we

11



move to higher levels of the architecture while sub-goal accomplishment rates increase as we
traverse the hierarchy towards the lower levels.

In RCS, there is a notion of decomposing the control system design into layers or levels of
abstraction (see Figures 3 and 4). The RCS Reference Model Architecture describes the types of
tasks carried out at each level of abstraction, starting at the bottom of the hierarchy. These
descriptions are useful in conceptualizing the organization of a control system application but
should not be interpreted as strict requirement. In a given application some levels may be absent
for some branches of a control system hierarchy and others may have additional layering. In
addition "black box" subsystems might be substituted for a sub-tree of the hierarchy in some
applications. The levels of abstraction are discussed here from the perspective of physical
movement tasks (rather than logical operations such as switch closures), as follows:

Level 1. Servo - The Servo Level functions as the interface to the intelligent machine's
actuators and sensors. It can be thought of as the device driver level. Task commands
from Level 2 are converted into voltages and currents to drive electro-mechanical devices
interfaced at this level. The Servo Level generally operates using high bandwidth
synchronous closed-loop control and it is the lowest level of abstraction in an RCS
hierarchy. Coordinate system transformations and set-point interpolation may be
performed at this level. Each actuator may be paired with one or more sensors to effect
closed-loop feedback control. The Servo Level periodically samples sensors and sends
out drive signals to effect stable control and smooth movements.

Level 2. Primitive - The Primitive or Prim Level accepts commands from Level 3 and
decomposes them into regularly spaced "move" commands to the Servo Level. Prim deals
with machine dynamics and performs functions like thermal compensation. Prim may also
do coordinate system transformations. Prim generally produces set-point output
commands to the Servo Level in a synchronous fashion (evenly spaced in time). Sensory
data, such as inputs from proximity, force, and torque sensors, are used to produce or
modify path trajectories in real-time.

Level 3. Elementary Move - This level is also called the E-Move Level and can be
thought of as the subsystem level within a single machine. The E-Move Level accepts
subsystem task commands from Level 4 and decomposes them into commands for the
Prim Level. "New" task commands from Level 4 generally arrive at irregular intervals,
since they are typically driven by events occurring in the machine's environment. The E-
Move Level deals with machine kinematics and is typically responsible for generating
collision free path commands to be further decomposed by the Prim Level.

Level 4. Individual Machine - This level has many different names depending on the
application. In factory automation it has been known as the Equipment Level or Task
Level. The Individual Machine Level accepts task commands from Level 5 and converts
them into tasks to the machine's subsystems. The Individual Machine Level is responsible
for coordinating the actions of the subsystems within a single machine. The control
system components are typically hosted on a single multiprocessor backplane at this level
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and below. The backplane host is typically connected to a local area network (LLAN) for
communication with higher RCS levels.

Level 5. Group(1) - Level 5 coordinates the actions of a small group of machines and
people (typically one operator). Generally the machine controllers communicate over
some type of local area network. In factory applications this level has been called the
Workstation Level and it supervises the actions of closely coordinated machines such as a
conveyor, a robot and a machine tool. Level 5 controllers are typically hosted on
computer workstations in factory applications.

Level 6. Group(2) - Level 6 has been referred to as the Cell Level in factory applications.
It is responsible for coordinating the actions of several groups of machines and people or
workstations. Level 6 accepts tasks from its supervisor (Level 7) and decomposes them
into coordinated tasks for its subordinates at Level 5. Level 6 is typically hosted on a
distributed network of multiprocessor computer systems or computer workstations (over a
LAN).

Level 7. Group(3) - Level 7 is typically the Shop Level in factory applications. This is the
third group supervisory level in an RCS hierarchy. Level 7 coordinates the activities of
Level 6 controllers typically over a LAN. If the application calls for higher levels, Level 7
might be connected to a wide area network (WAN) for coordination with other Group(3)
controllers via a Group(4) supervisor.

Level 8. and Higher - There is no upper limit on the number of levels in an RCS
hierarchy. The number of levels of coordination and abstraction are strictly a function of
the demands of the application (i.e., the organization of people, machines, communications
links and tasks to be coordinated).
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2.3.4. Task Decomposition

In Figure 5, the task execution model for planning and execution between levels is decomposed
into a repeating pattern of Job Assignment (JA), Planners (PL), and Executors (EX). We
define the Behavior Generation (BG) function as containing the subfunctions JA, PL and EX.
Job Assignment involves commanding subordinates to carry out concurrent tasks. Stored or
generated plans temporally decompose tasks into sequences of sub-goals to be accomplished, to
the limit of the appropriate planning horizon for a level. Planners are responsible for selecting
pre-stored plans and/or generating new plans to be instantiated by the Executors. Executors
instantiate the next step in the current plan (selected by the PL) based on the current state of the
world as viewed via the World Model. Executors pass instantiated task commands to the next
lower level JA, where this pattern is repeated, down the hierarchy, in a pipelined refinement of
task detail. In general, subordinate levels deal with less abstract task details, at faster sub-goal
completion rates.
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SENSORY PROCESSING
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2.3.5. Sensory Processing

Figure 6 deals with Sensory Processing (SP). The Sensory Processing function is responsible
for filtering incoming sensor data, comparing the data stream with predicted values supplied by
the World Model, integrating sensor data over time, extracting a historical trace of the data
values, performing coordinate transformations on the data to allow data fusion from multiple
sensors, and applying windows to the data stream in order to detect sensory input which has
exceeded an event threshold. Sensory Processing works with the World Model to maintain the
best estimate of the state of the world in real-time.
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WORLD MODEL FUNCTIONS
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2.3.6. The World Model

Figure 7 shows the World Modeling functions. World Modeling (WM) functions act as servers
to the SP and BG functions (BG contains the JA, PL, and EX functions discussed above) by
answering queries, accepting updates and generating predictions. WM also shares responsibility
for performing value judgments and goal selection. Global Memory (GM) is the complete
collection of globally defined variables. It may be thought of as the repository or knowledge base
where controller nodes (i.e., SP, WM, and BG functions) store information to be shared with
other controller nodes. In many applications Global Memory is implemented as a distributed
database. GM can also be viewed as a combination of the communications mechanisms and the

database repository necessary for implementing an RCS application.
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The terms, World Model or World View, are used to describe the intelligent machine's collective
capability to perceive the world in which it functions (both external and internal). When we use
these terms we are referring to algorithms for understanding the world, WM server functions, and
the information stored in the Global Memory.
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SECTION 3. RCS METHOD TENETS

The Random House College Dictionary, [Ra 82], defines fenet as, "any opinion, doctrine, dogma
etc., held to be true”. It defines canon as, "a body of rules, principles, or standards accepted as
axiomatic and universally binding", and it defines canonical as, "pertaining to, established by, or
conforming to a canon or canons". We will use the word tenet, here, to mean guidelines and
engineering rules of thumb which characterize the RCS Methodology. Together the RCS
Architecture definition and these tenets form a basic set of rules or systems integration standards
for building real-time control systems. These standards can be considered the canons of RCS and
they define a canonical form for real-time control systems design.

The RCS Methodology defined here draws upon elements of established software engineering
methodologies (e.g., functional decomposition and structured design) and emerging methods
(e.g., object oriented design and relational methods) while placing particular emphasis on the RCS
task decomposition approach which has been developed at NIST and elsewhere over the last
decade.

This RCS Methodology is based on the following empirically established method tenets which we
will discuss in more detail in the remainder of this section. Tenets 1) through 5) are generally
applicable to all RCS Methodologies while tenets 6) through 10) are expressed in terms of the
Barbera approach and may differ from other interpretations of the RCS canonical form.

1) Use task oriented decomposition (driven by scenarios)
2) Use hierarchical organization and assign responsibility and authority
3) Organize the control hierarchy around tasks top-down and equipment bottom-up
4) Partition by an order of magnitude between levels (spatial and temporal resolution) and
roughly ten decisions or less per plan
5) Use seven + or - two subordinates per supervisor and only one supervisor at a time
6) SP/WM/BG functions are distributed throughout RCS and assumed to exist in each node
7) Allow human I/F at any node
8) Controller modules are finite state machines communicating through Global Memory
* Use a controller template as the basic building block
* Use cyclic sampling rather than interrupts for context switching
* Surround everything with data buffers
* Use non-blocking input/output (I/0)
* Implement Global Memory using a One Writer, Many Readers Paradigm
* Match the control cycle time to the demands of the control application
9) Design for concurrent processing
* Measure execution time performance
* Allocate sufficient computing resources
10) Use synchronous control at the lowest levels transitioning to asynchronous control at the
highest levels
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3.1. Use Task Oriented Decomposition

Every methodology seeks to devise a model of the problem domain which explicitly represents
and emphasizes the most critical components of the problem while simplifying those aspects
which have a lesser impact on the solution being sought. Every model is, after all, a simplification
of the real world. The trick is to choose an abstraction (or a set of abstractions) that highlights
the parts of the problem that make a difference in the understandability, quality and efficiency of
the solution. That is why it is so important to choose a methodology which matches the problem
domain. In the domain of intelligent machine control systems we believe tasks are the driving
factor.

The RCS Methodology approaches this problem by attempting to create a generic organizational
modeling structure that formats information in a way that is patterned after human techniques of
abstraction. It assumes that humans have a very limited capacity for breadth of information
management and must resort to layers of abstractions so they never deal with too many pieces of
information at a time {[MI 56]. This technique is evident in most, if not all, human organizational
structures. The layering of abstractions creates hierarchical organizational frameworks with
detailed information at the bottom and higher and higher levels of information abstraction as one
proceeds up through the layers. The RCS Methodology has, therefore, attempted to create a
generic information representation mechanism of generic units that can be assembled into
hierarchical structures with detailed processing at the bottom layers and higher level abstractions
occurring at the upper layers. Thus, the methodology is not so much a model of the problem
domain of a particular control application, as it is a model designed to be synergistic with human
information representation techniques.

As previously mentioned, we define the domain of intelligent machine control systems in this
document to include the control of electro-mechanical devices designed to perform some useful
work using computerized control. Intelligent machines are further assumed to possess the
capability to respond to the physical environment in some intelligent way, in real-time. This
definition is intended to cover automation systems, embedded systems and robotic systems.

In this problem domain, practical control systems solutions are always defined within the context
of the tasks to be performed (electro-mechanical actions to be taken). Our design models should
strive to explicitly define all critical information related to carrying out these physical actions. We
generally consider things like printed reports, displays to be generated, and other more traditional
data processing chores to be of secondary concern.

The process of designing practical systems solutions always involves trading-off general purpose
capabilities against task specific requirements. Examples of such trade-offs can be seen in
common human transportation systems. People have developed automobiles, trains, buses,
aircraft, rockets, elevators and escalators all for transportation but each for a specialized class of
transportation tasks. Even though these examples can all be categorized as transportation
functions, the specific systems solutions are all very different from one another. The tasks to be
performed, the tools and machines to be used, the objects to be manipulated and the human
interaction required, are the elements that distinguish any one system application from all others.
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The attributes of tools, machines, and physical objects can be described independently of each
other, but, task definitions are dependent on all three of these object types as well as being
dependent on the human interaction required.

Recognizing this fact, this tenet suggests that fask decomposition should be explicitly represented
in modeling intelligent real-time control systems. Further it stipulates that task knowledge (i.e.,
control flow, processes, procedures, strategies and tactics), task specific object knowledge and
task specific data processing knowledge should be encapsulated within modules which generate
commands to their subordinates to accomplish system tasks when stimulated by task commands
from their supervisors or in response to other communications (task state knowledge) arriving
through Global Memory.

From a practical point of view this tenet suggests that it makes no sense to develop any sensory
processing algorithm, data representation or world model algorithm if the parameters computed
and/or stored are not required to accomplish some useful system task. It suggests that the only
universe of object representations that are required are those which are meaningful within a task
context (objects are the focus of attention for tasks). See Figure 1. New algorithms, data
representations, and parameters can easily be added to an implementation when new tasks are
added by either encapsulating them within existing modules or by adding new modules.

One of the first steps the systems engineer and the domain expert should complete is to produce a
written narrative description or scenario of the operation of the intelligent machine system to be
designed. A scenario should outline the expected sequence of events required to successfully
accomplish system tasks under normal conditions as well as the event sequences required to deal
with exception conditions and emergencies. We have found scenarios to be an excellent means of
guiding the enumeration of all of the relevant task elements in an application-specific problem.
The knowledge to be embedded in the computer based control system comes from human
expertise and human memory. While the human mind is extraordinary in what it can contain, it is
limited in its ability to retrieve information. The human mind appears to be an associative system
rather than a random access system (i.e., one thought triggers another associated with it). The
currently popular way for human domain experts to recall all of the relevant knowledge about a
task is have them pursue a scenario of task activities that allows the associative triggering of all
sorts of relevant details in the context established by each sequential element of the scenario
description.

Albus [Al 91b] uses "task frames" to capture task knowledge in a nearly compilable form. When
using Albus' technique, scenarios are required as a source of the knowledge to be stored in the
task frames, as well as for testing and modification of the code that is generated from the task
frames.
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3.2. Use Hierarchical Organization and Assign Responsibility and Authority

The primary objectives of the RCS Methodology are to improve human understanding of the
design, to manage software complexity, to provide for robust, verifiable, efficient, coordinated,
real-time performance, and to provide for extensibility, portability and software reuse.
Hierarchical organization has been found to be a key element in realizing these goals.

Humans have used hierarchical organizations to manage complexity and real-time coordination
problems throughout history. There are also numerous examples of the power of hierarchical
organization in the animal world. Humans, many insects, and other animals instinctively form
social hierarchies to build habitats, hunt for or produce food, fight their enemies, reproduce,
nurture their young, and in general improve their quality of life and their chances of survival.

People use hierarchies whenever complex real-time coordination of more than one individual is
necessary. Notable examples are sports teams (managers, coaches, team captains/signal callers,
player positions and specialized team groupings), enterprise structures (corporations, chief
officers, divisions, plants, departments, sections, groups, worker specialties), and military
organizations (Commander in Chief, Army, Theater, Corps, Division, Brigade, Battalion,
Company, Platoon, Squad, Soldier). These organizational structures employ strategies and
tactics in their procedures in order to deal with unstructured environments and uncertain
information in_an ordered way. Based on hierarchically structured plans (strategies and tactics)
measures of performance can be defined to help refine real-time performance. These highly
organized groups typically spend a significant amount of time training and practicing their
designated functions in order to maximize their real-time performance and the quality of the
result. Practice, training and performance measurement, often driven by scenarios that highlight
critical parameters, are the techniques employed in order to develop, improve, and verify
strategies and tactics (uninstantiated a priori plans).

In unorganized social situations people's behaviors can be defined independently of each other and
each human being can be considered to possess roughly an equal capacity for reasoning and
performing work. Therefore they can be said to be independent agents. When people are
organized hierarchically, such as in a military situation, they agree to function within a limited
range of responsibility, they are assigned a limited authority for decision making and they agree to
be constrained in their actions by a chain-of-command. Even so, the people in such a structure
still have roughly the same capacity for reasoning and performing work, no matter where they are
placed in the chain-of-command. Each person simply performs his or her work at a different level
of abstraction, at a different resolution, and within a different time horizon, given his or her
position in the structure (using knowledge bases, strategies and tactics appropriate to his or her
station).

The RCS analogy to these examples is a highly modular partitioning of process intelligence
codified into a hierarchy of modules. Each module has a bounded clearly defined range of
authority and responsibility, each deals with a particular layer of abstraction and timing horizons
within the problem domain and each has clearly defined vertical, horizontal, and point to point
channels of communication.

21



A popular software organizational structure often viewed as an alternative to a hierarchical
structure is the notion of "independent cooperating agents". In this technique software agents are
created which are roughly equal in authority and responsibility. These agents must then negotiate
for a share of control over a finite pool of resources (computing time, actuators, sensors, fuel,
power, goal designation, direction and speed of movement, etc.) in order to achieve a desired set
of system goals. They negotiate according to some established set of arbitration rules (priorities,
voting, ordered sets of constraint conditions, etc.) and usually use message passing over a
computer network as a communications scheme (i.e., client/server systems).

The independent cooperating agent technique is analogous to the human parliamentary
organizational structure. Humans use this type of structure to establish policy, to define
arbitration rules, to divide resources, and to create or modify rules or laws of social interaction
(e.g., government, civic organizations, standards bodies, etc.). Such human organizations are not
known for their efficient real-time performance. The results achieved using this type of structure
are often unpredictable (non-deterministic). Seemingly insignificant perturbations of the inputs to
such a system can result in quite unexpected major changes in the resulting behavior. It is difficult
to verify all of the possible behaviors that might be exhibited given responses to changes in the
input space for such systems. The principal utility of such structures is to ensure some measure of
"fairness" in the result as well as a social sense of "due process".

In short, we don't believe the use of the independent cooperating agent technique alone (without
hierarchical organization) is a better choice for achieving complexity management or robust,
verifiable, efficient, coordinated, real-time performance. On the other hand, an RCS
implementation can certainly benefit from the judicious use of these negotiation techniques when
the application warrants them. This can be particularly evident when implementing a system
which, by its physical nature, requires negotiated resource sharing.

RCS accommodates both hierarchical command and control as well as negotiated resource
sharing between controller modules (i.e., cooperating agents). An RCS system can be defined as
a hierarchy with a fixed chain-of-command where each controller module has a fixed set of plans
and algorithms built in. However, RCS can also be implemented with conditional responses or
modes of operation such that the command tree can be reconfigured from moment to moment
depending on conditions reflected in the World Model. RCS planners (PL functions) can work
from a fixed set of pre-computed plans or they may generate plans based on heuristic search
strategies or game theoretic statistical methods. Modules may negotiate among themselves for
assignment of subordinates, or the allocation of shared resources (e.g., time, tools, fuel, etc.)
needed for their respective assigned jobs. RCS in no way prohibits or even inhibits the use of
cooperating agents technology. RCS simply embeds negotiation within a regular hierarchical
computing structure where the unpredictable nature of these methods can be safely handled.

3.3. Organize the Control Hierarchy Around Tasks Top-Down and Equipment Bottom-Up

The process of developing an RCS application and organizing its control components is an
iterative one which might begin with a top-down decomposition of tasks to be performed
(forming a task tree structure) and the organization of a hierarchy of modules which will be
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responsible for coordinating the tasks to be performed in a bottom-up design procedure. The
order in which these two activities take place is not specified and is less important than realizing
that the objective of this iterative design process is to map the task tree onto the controller
hierarchy, as shown in Figure 8.

By organizing an RCS hierarchy around the equipment to be controlled (machines, actuators and
sensors) in a bottom-up process we can minimize and simplify the difficult real-time problems of
resource contention, conflict resolution and scheduling. Every man-made machine ultimately has
a finite number of actuators and sensors through which it can influence the problem environment.

RCS Hierarchy Development

Controller
Task Tree Hierarchy

l

 Conbelor Skt

Primitive Tasks Equipment: Sensors/Actuators

Figure 8.

We can capitalize on this fact by structuring a supervisor-subordinate hierarchy of intelligent
controllers using a bottom-up approach starting from the actuators and sensors that the intelligent
machine will be directly controlling. We can ensure that every subordinate is directed by only one
supervisor at any instant in time (one software read/compute/execute cycle) and that there is a
clearly defined supervisory module for each individual actuator and sensor at any instant in time.
Using this structure it is then possible to define coordination and scheduling plans to be used by
each controller module within the scope of its level of authority and responsibility. Furthermore
because the hierarchical structure predefines the responsibility and authority of each
controller module and the resources it may control at any instant in time, the problems of
resource contention, conflict resolution and scheduling are dealt with locally within each
supervisory controller module (as defined by its local library of plans) and are independent of the
concurrent actions of all other controller modules at the same level of authority.
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We imply, above, that the hierarchy may be redefined in between control cycles. In fact, this has
been accomplished in laboratory demonstrations involving reassigning a mobile robot cart to
different work cells in the NIST AMREF, as it transported parts trays from work cell to work cell,
[Mc 82]. Another AMRF example is the automatic changing of end-effectors (a gripper) on a
robot in real-time. Resource sharing or restructuring the RCS hierarchy in real-time, however, is
still very much a topic for further research.

Whenever practical the designer should group hardware components (actuators and sensors) and
software components (RCS modules) so as to minimize the number of interfaces necessary in
order to implement closed-loop control through the RCS hierarchy at the lowest level practical.
The intent of this guideline is to localize the design of closed-loop control within RCS (into
modular subsystems) in order to minimize the potential for "ripple effect" when evolving,
expanding or maintaining the implementation and to minimize the need for and extent of high
bandwidth feedback loops. Communications bottlenecks can also be eliminated by judicious
grouping of closely coordinated components.

Physical constraints within the problem domain often will conflict with this guideline thereby
imposing engineering trade-off decisions (e.g., important sensors or actuators may be physically
located on different parts of the machine or on separate structures). Other RCS tenets listed here
might also conflict with this guideline. For example the " seven + or - two" tenet suggests adding
hierarchy (and therefore additional interfaces) in order to manage complexity and improve human
understanding. The "order of magnitude" tenet can also suggest the addition of more levels in the
hierarchy and additional interfaces again in the interest of complexity management and
understandability. As always, the engineer's function is to perform the engineering analysis
necessary to arrive at a viable engineering design trade-off.

3.4. Partition by an Order of Magnitude Between Levels and Roughly Ten or Less
Decisions per Plan

In robotic applications and other control systems problems that are concerned with achieving
smooth motion and closed-loop stability, a widely accepted rule of thumb suggests that nested (or
hierarchical) control loops should be separated by an order of magnitude in closed-loop
bandwidth.

In dealing with the issues of minimizing the impact of complexity and providing for human
understanding of the design result, we have devised a rule of thumb that suggests limiting the
scope of the problem domain for any individual controller module or RCS level to roughly one
order of magnitude in terms of the resolution of the maps and the geometric models it uses for
planning and in terms of the timing horizon it uses for planning and scheduling. This rule of
thumb should not be strictly interpreted especially at the higher RCS levels since its intent is to
limit the number of planning decisions or steps any one planner needs to plan into the future. In
some cases the number of required planning steps is event driven rather than strictly related to the
passage of time. Good engineering judgment needs to be exercised when applying this rule of
thumb since the objective here is to create modularity and thereby to limit the scope of complexity
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in the coordination of tasks and to limit the number of planning decisions or steps to be planned
into the future to roughly less than ten. Some individual steps may have very long durations.

The amount of task decomposition between levels is typically reflected by the number of
subordinates a supervisory module directs. If there is a single subordinate module under a
supervisor, then the decomposition of a task by the supervisor, from its supervisor, to some set of
output commands to its single subordinate is in the range of one to ten (i.e., the task is
decomposed into less abstract subtasks). A module implementing this type of decomposition
emphasizes Planner and Executor subfunctions. If, however, there are a number of subordinates
being coordinated by a supervisor, then the amount of task decomposition occurring within the
supervisory module may be much less (i.e., the output commands from the supervisory module to
its subordinates are almost at the same level of abstraction as the input commands to the module).
In this case, the role of the supervisor may be primarily in coordination or synchronization of
multiple subordinates, rather than in decomposition of tasks from a higher level of abstraction into
significantly simpler subtasks. In this instance the supervisory module is performing a Job
Assignment sub-function.

3.5. Use Seven + or - Two Subordinates per Supervisor and Only One Supervisor at a
Time

This tenet seeks to manage task knowledge complexity and human understanding of the design by
adding hierarchy when more than roughly nine subordinates must be supervised by a controller.
This rule takes its name from George Miller's early work, [Mi 56]. He empirically found that
human beings are able to manage seven + or - two things at a time without losing control. This
guideline suggests adding a supervisory controller module whenever more than nine subordinates
must be controlled and that the optimum number of subordinates per supervisor is roughly five.
Again software engineering judgment is always called for in applying these guidelines. It is
possible that in a particular application only one supervisor may be needed for a much greater
number of subordinates (e.g., twenty or more) if all of the subordinates are performing very
similar tasks. We sometimes see this pattern in human organizations such as in assembly line
production.

3.6. SP/WM/BG Functions are Distributed Throughout RCS and Assumed to Exist in
Each Node

The RCS architecture has evolved at NIST from a controls system point of view. It is grounded
in the notion that closed-loop control is a fundamental construct of the architecture style. With
this in mind we have defined a generic controller module (Figure 9) as the basic processing entity
through which closed-loop control can be implemented, therefore a generic controller module
must be capable of performing the basic closed-loop control functions of Sensory Processing
(SP), World Modelling (WM) and Behavior Generation (BG). An RCS architecture is then built
of RCS controller modules interconnected to form a hierarchical tree structure of controller
modules with one or more modules forming a node in the hierarchy. Furthermore the modules
are designed to be interconnected to form nested closed-loop control with each node contributing
to one layer of problem abstraction and decomposition.
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While the RCS architecture philosophy focuses on highly modular closed-loop control, it does not
require closed-loop control within every implemented module. In fact it would be possible to
implement an entire RCS compatible architecture without including real-time sensory input for
closed-loop control. This implies that while SP, WM and BG functions are distributed
throughout the hierarchy and may exist within every controller node, there is no requirement
that more than one of these functions (or their subfunctions - JA, PL, and EX) be non-trivial,
or even exist, in any one implemented controller node. In practice open-loop control nodes
often occur in RCS especially when implementing a simple on/off control function. In this case
closed-loop control might be implemented at the next higher level through a supervisory
controller node.

An RCS Controller Module

Commands/Status
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Controlier Moduie

/ ] TR
SP - Sensor Processing
WM - World Model Processing
BG - Behavior Generation Module |
GM - Global Memory

Sensors Commands/Status
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Figure 9.
3.7. Allow Human Interface at any Node

Recognizing that almost every practical system must have a human interface at some level and
that it is usually desirable to develop intelligent machine systems in an evolutionary manner, we
believe it is prudent to build the possibility for human interface into every controller node as part
of the system design philosophy as opposed to adding the human interface capability in an ad hoc
manner as the need arises. This objective can be realized by providing for human interface in the
design of the generic RCS controller template to be discussed in a subsequent section of this
document.
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The important philosophical point to be made about the human interface is that human interaction
is managed by the control system in the same manner as all other input/output (I/0). Any
branching required, as a result of human interaction, is handled without the use of interrupts. If
the human operator wishes to cause a certain command at a particular level to execute, he does so
by requesting that the supervisory module, with the authority and responsibility to do so, issue
that command. In this manner, the supervisory module is able to control the access to its
subordinates, allowing human interaction only when and where appropriate, thereby preserving
the chain-of-command. The human is never allowed to directly break or bypass the chain-of-
command. This results in a known controlled interaction, allowing the system to maintain
knowledge as to the state of the system during human interaction, which simplifies the problem of
resuming automatic behavior after the human withdraws. Human interface is always buffered and
accomplished using non-blocking I/O in order to ensure that the RCS control system is always
running and capable of detecting and reacting to exception conditions even while interacting with
a human operator.

3.8. Controller Modules are Finite State Machines Communicating Through Global
Memory

In keeping with the controls systems origins of the RCS philosophy as well as the emphasis placed
on programming for concurrent multiprocessor environments this tenet defines an RCS controller
module (Figure 9) as a finite state machine. Finite state machines are characterized as functioning
on a read/compute/write execution cycle. Such machines divide time into discrete increments
based on their execution cycle duration. An instant of time in this context is considered to be one
read/compute/write execution cycle (the time period of one control cycle). Finite state machines
deal with external stimuli as snap-shots in time and have a deterministic and verifiable response
which depends solely on the internal state of the machine and the event or éxternal stimulus being
presented to the machine (through Global Memory) at any given instant in execution time.

An integrated set of rather simple finite state machines can exhibit amazingly complex and
intelligent dynamic responses to uncertain stimuli even though they are completely deterministic
and verifiable. These properties make them an excellent choice as the basic execution model for
RCS applications.

The following guidelines are offered as an extension of the finite state machine implementation
method:

* Use a controller template as the basic building block

* Use cyclic sampling rather than interrupts for context switching

* Surround everything with data buffers

* Use non-blocking input/output (I/O)

* Implement Global Memory using a one writer, many readers paradigm
* Match the control cycle time to the demands of the control application
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RCS Controller Template

Debug functions: Read time, initialize performance metrics

WM functions: Compute predictions
Read all input buffers (including sensor data)
Evaluate status reports, values, predictions, options
Determine operating mode, priorities, resources

Fiiter, integrate, convert coordinates, fuse sensor data
Compare predicted to observed data
Evaluate thresholds

Cyclic functions: Compute algorithms that must run on every control cycle
independent of the command (or plan) currently being

PL. functions: New command?
Select new plan based on New Cmd
Run path generator or search based planner
Load new plan if New Cmd

EX functions Evaluate events, thresholds and states (consider mode,
status, options, priorities, errors, emergencies etc.)
Instantiate next step In plan
Transition 1o next state

JA functions: Execute event specific processing
Assign cormmands to subordinates

8P & WM functions:  Run post processing calculations
Build output buffers

Debug functions: Calculale execution time
Build debug messages

WM functions: Post output buffers

Figure 10.
3.8.1. Use a controller template as the basic RCS building block.

A controller template can be implemented in almost any computer language to provide the basic
"hooks" for communicating between controller modules, as well as to contain most of the
overhead functions necessary to comply with the RCS integration standards (including the ability
to measure execution time performance). Such a generic template, as shown in Figure 10, can
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then be replicated and filled in (instantiated) with task specific plans, state tables, and algorithms
at design time. Appendix A provides example C language code which we used in implementing
controller module templates for our submarine automation project.

A controller template can be used to implement any of the fundamental RCS subfunctions (e.g.,
SP, WM, JA, PL, EX). A controller module built using a template may contain any number of SP
and WM functions but only one BG function (JA, PL, EX). It is also possible to construct a
controller node using a controller module for each sub-function. This technique would resemble
Fiala's [Fi 90a] implementation of atomic units. In many cases a controller node can be
implemented with a controller module which emphasizes one or two subfunctions while the rest
exist only trivially. In other words, a particular controller module instance might only implement
a planner function. In another instance a module might perform a Job Assignment function,
coordinating several subordinates. Another module might be responsible for executing one or
two pre-stored rule plans (an Executor function). In still another instance an implemented module
might perform mostly Sensory Processing and/or World Modeling functions while only
performing trivial BG functions.

CPU Main Program Template

[ Run Controller #11
[

]
o

1 Run Controller #n1
|

LRun Simulator #1]

o
°
o

, Run Simulator #n ,
)
Communicate: Exchange
GM data with other CPUs

Figure 11.
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3.8.2. Use cyclic sampling rather than interrupts for context switching.

Control flow within an RCS design is altered by executing plans (state tables) within controllers
(state machines), resulting in verifiable deterministic behavior. At the very lowest levels,
hardware interrupts are used to latch or buffer incoming sensor data that might happen between
control cycles. Once the data is latched and buffered it is sampled on the next control cycle. Data
is not queued up in serial data buffers, however. The RCS control cycle time must be selected
and implemented to ensure that every significant incoming piece of data can be sampled and
processed before the next sample arrives.

To implement the basic "heartbeat" control cycle in an RCS implementation we can use a simple
wait loop or we might also use a time based interrupt, as shown in Figure 11. However,
interrupts are never used to alter control flow in real-time, in a Barbera approach RCS
implementation. Allowing a real-time operating system to insert a branching action in the control
sequence (not explicitly modeled in an RCS plan), is not acceptable. Such interrupt branching is
non-deterministic and usually difficult if not impossible to verify. Interrupt techniques also make
it difficult to calculate and measure execution time performance.

Interrupt driven multi-tasking environments are expressly designed for the purpose of sharing the
available computing resource of single CPU systems. RCS accomplishes multi-tasking by
requiring the designer to make an explicit assignment of software modules (controllers) to specific
CPUs at design time. Execution time is then measured to ensure that the "worst case” execution
performance falls within the required real-time performance specifications. Multi-tasking is
accomplished within RCS by implementing a "Main Program" for each CPU in the system (see
Figure 11). The Main Program is then used to simply schedule, in sequential fashion, each
controller that will share that particular CPU. Any number of controller modules can share a CPU
as long as the Main Program can complete the execution all of its assigned modules within the
design requirement for the cyclic execution time of one control cycle.

3.8.3. Surround everything with data buffers.

The independence of RCS controller modules is preserved in an RCS implementation by
surrounding every controller with data buffers in a triple buffering scheme, as shown in Figure 12.
This allows the designer to reassign software modules (controllers) to any CPU and to any
position in the sequential order of execution within the execution schedule of one CPU
(controlled by the Main Program). Triple buffering means each controller maintains a set of
buffers for all of its own I/O, and each CPU maintains a set of buffers (Global Memory buffers)
for all of the I/O data its assigned controllers use, therefore there are three sets of buffers involved
in a controller to controller communication (the writer's local buffers, the global memory buffers,
and the reader's local buffers). Each controller reads its inputs and writes its outputs once each
control cycle. The Main Program is responsible for communicating with all other CPUs in the
system. Once each cycle the Main Program determines which of its data buffers need to be
written (updated) to other CPUs and it reads (receives updates) data written by other CPUs (see
Figure 11). Communications is discussed in more detail in later sections. Appendix B provides
example C language code for a Main Program.
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3.8.4. Use non-blocking input/output (L/0).

The Barbera RCS approach uses non-blocking 1/0, gnly, in order to ensure that the RCS system
is always capable of responding to changes in its inputs (human commands or sensory input).
This also means that RCS is always operating on the latest available data (data queuing is not
used). In an RCS implementation the control cycle is never blocked waiting for an input or an
acknowledgement that a receiver has read output data. Since this RCS Method is based on cyclic
sampling, non-blocking communication is required in order to preserve controller response time.

3.8.5. Implement Global Memory using a One Writer, Many Readers Paradigm.

In many RCS applications Global Memory is implemented as a distributed database. Data is
written by only one writer and may be read by any number of readers. Data is linked between
writers and readers at design time through the definition of interface buffers for each controller
module in an RCS hierarchy. The highest communication bandwidth typically exists between SP,
WM, and BG processes within an RCS controller module. It is important to note, however, that
it is possible to exchange data between controllers at any level in the hierarchy through
appropriate communications mechanisms. Also note that only commands and status are
constrained to communicate in a hierarchical fashion between superior and subordinate
controllers, even though we generally implement commands and status as Global Memory
interface buffers just like all other data. Data transfers through Global Memory may be
horizontal, vertical or point-to-point between any writer and any set of readers. This allows us to
easily implement debug monitoring of the communication between controllers.
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Commands are never queued up in a subordinate's input buffer. Instead, supervisors either assign
a new task to a subordinate after recetving a "done" status, or they abort the subordinate's active
task by issuing a "new" command. New commands automatically supersede any assigned task in
this RCS Methodology. This means that we never expect a subordinate to resume a task that has
been superseded, without being commanded to do so (usually through a series of commands
which re-initialize the task to its previous state) by its supervisor.

3.8.6. Match the control cycle time to the demands of the control application.

In an RCS application the basic control cycle time and sampling rate must be matched to the
physical demands of the control application. Astrom and Wittenmark define sampling in the
context of control and communication as, "a continuous-time signal replaced by a sequence of
numbers, which represent the values of the signal at certain times", [As 90]. The choice of
sampling rate depends on the properties of the analog and discrete sensory input signals to be
sampled, the signal reconstruction method chosen, and the purpose of the system. The closed-
loop servo rate is chosen to effect stable control and smooth motion given the natural frequency
of the physical (mechanical) system being controlled. In RCS systems the reaction time of the
system to detected events is determined by the CPU control cycle time.

In many RCS applications the sampling rate, closed-loop servo rate, and CPU control cycle time
are all set to be equal to the heartbeat rate. A worst case analysis is performed to select the
heartbeat rate. If the analysis shows that there is insufficient computing speed available or that
communications latencies make it impractical to chose a single worst case rate as the heartbeat
then other options should be considered (e.g., filtering and detecting very high frequencies as a
preprocess before sampling, multiple rates among multiple CPUs, variable rates, etc.).

Our first concern is that the sampling rate must be chosen to accurately represent the highest
frequency analog input signal in the control application. The sampling rate must generally be at
least twice the rate of the highest sensory input signal frequency as a first approximation. In most
real-time systems zeroth order hold devices are used for causal reconstruction since
reconstruction delays are unacceptable. The accuracy of signal reconstruction can be analyzed
using the Nyquist Sampling Theorem. Signal sampling accuracy can sometimes require a rate of
six to ten times the highest frequency of concern. In some applications the signal rise time might
require setting the sample rate to as much as ten samples per rise. Digital signal frequencies (e.g.,
switch closures) must also be analyzed to ensure the latching and processing of every occurrence
of the discrete input signal with the highest potential frequency.

In robotics and many other control applications we must ensure that our closed-loop servo rate is
chosen for control stability and we are often interested in achieving smooth motions. Stability and
smooth motion requirements may dictate higher servo loop rates. The Nyquist stability criterion
[Ku 67] or other analysis methods should be used to evaluate stability. Analysis often dictates
closed-loop servo rates of two to ten times the highest desired position control bandwidth. To
achieve smooth motions the closed-loop servo rate might be set as much as fifty times the desired
position control bandwidth. '
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Communications and compute time latencies can be a principle cause of instability in high speed
servo control systems. These problems become apparent when implementing very high speed
servo-loops while computing complex algorithms (e.g., large matrix inversions). Robot Systems
Division researchers have implemented RCS control systems using pipe-lined multiprocessors
running at different cycle rates when dealing with control applications which push the state-of-
the-art in real-time high speed computing. Fiala explores methods of dealing with these issues in
[Fi 90a] and [Fi 90b].

We must also consider the reaction time of the RCS system to events being monitored. The CPU
control cycle rate chosen must meet the worst case response time requirement for reacting to
event inputs (intelligent context switching).

The sampling rate we chose will set the basic control cycle time or heartbeat for the RCS system.
Selecting a heartbeat cycle time is a trade-off problem between the criteria discussed above and
the number of instructions per cycle that can be executed on any given CPU. In general we would
like to choose the longest heartbeat cycle possible which still meets all of the worst case
requirements for sampling, stability, smooth motion and reaction time. By doing so we can
achieve a good balance between computing capacity per cycle and closed-loop real-time
performance.

3.9. Design for Concurrent Processing

RCS is an inherently parallel programming method which seeks to develop software processes
(controller modules) which will execute in a cyclical and concurrent manner on multiple CPUs. By
designing for concurrent processing we can more easily match the control system implementation
to the concurrent nature of most real world intelligent control system problems. The software
processes we design can then be easily distributed across a multiprocessor hardware computing
environment in order to meet real-time execution constraints. These controller modules should be
thought of as finite state machines executing in parallel, preferably on a fixed read/process/write
control cycle which can be viewed as the system's "heartbeat". As a consequence of this tenet the
RCS Method differs from traditional procedural programming methods, which are aimed at
producing sequential code to efficiently execute on a single CPU.

In general the Barbera RCS method is less concerned with optimizing the utilization of any one
CPU and more concerned with managing software complexity and providing a means to ensure
deterministic and verifiable real-time performance.

This tenet suggests that for many practical applications it is often more cost effective to add
microcomputer hardware (single board computers and memory) to a multiprocessor environment
in order to meet real-time needs. The other alternative is to procure a single central processing
unit (CPU) with sufficient computing speed to meet the worst case real-time demands of the
application. This can often lead to the purchase of very expensive computing platforms. If we
elect to use real-time operating system interrupt services to dynamically manage the central
processing unit's computing power, we will often increase the complexity of our control system
application programs and make code verification more difficult, as part of the bargain.

33



Fortunately we now live in an age when microcomputer hardware has become quite affordable for
many applications. In the early days of computerized control systems, engineers had to go to
extremes to preserve computing resources because they were so expensive. Many applications
were simply not feasible from an economic perspective. Operating system services like interrupt
processing, multi-tasking, and time slicing were some of the techniques employed to help
engineers allocate this costly resource. Today we can trade-off inexpensive hardware against the
requirements of managing complexity and achieving verifiable performance especially in very large
systems. Given today's hardware prices, size, and power requirements, we cari now afford to
explicitly design for concurrent computing in a multiprocessor environment without resorting to
non-deterministic interrupt processing.

The following ideas are directly connected to this emphasis on concurrent processing:

* Measure execution time performance
* Allocate sufficient computing resources

3.9.1. Measure execution time performance.

Real-time is defined as generating a reasonable and effective solution in time to maintain stable
control of the problem. An optimum solution arriving too late can often result in disaster. The
lesson in this definition is that real-time systems must always be designed to meet or exceed
"worst case" timing requirements. It is incumbent on the systems engineer to measure and verify
real-time performance. The implementation approach described in this paper includes building in
execution time monitoring in every RCS controller and within each "Main Program" (defined
later) in order to guarantee the design meets the real-time requirements of the application, as
shown in Figure 10.

It is easy to redistribute the SP, WM, or BG functions (or any set of sub-functions) which might
logically reside within a single controller module across more than one controller when one
function or sub-process is a "compute hog"”. When a particular process requires more CPU
processing power than remains available (within the established execution cycle time) on a shared
CPU, it is reduced to an "atomic algorithm" and implemented within its own separate controller
module. That controller can then be assigned to execute on its own dedicated CPU or a shared
CPU with sufficient reserve computing capacity to run concurrently in a multi-processing
environment.

An example of this could be a compute intensive, algorithmic path planner which is assigned to
run concurrently on a dedicated CPU. A controller containing only this path planner would
operate under a single task command, "run", and it would compute a new path plan by reading in
the appropriate state variables and computing a solution on every control cycle. If such an
algorithm could not be made to run in a single control cycle, then it might be allocated two or
more cycles to complete a new path solution. Each time its solution becomes available the
controller would post the result (the path plan) in Global Memory to be read by the appropriate
controller (the controller that executes the path plan generated).
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3.9.2. Allocate sufficient computing resources.

The Barbera RCS design philosophy advocates trading-off additional hardware in the interest of
minimizing software complexity. Rather than trying to create a customized point solution which
attempts to maximize the utilization of existing computing hardware, we would simply add
another CPU whenever the computing capacity is overloaded by additional software demands. In
the RCS Method described here, controllers may be assigned to execute on a shared CPU as long
as their combined execution time performance does not exceed the required basic control cycle
time. If adding another controller module to the Main Program or another plan, or sub-process to
an existing controller module causes the cycle time to be overrun, then add a CPU and
redistribute (assign) the software modules (controllers) to the expanded hardware resources.

3.10. Use Synchronous Control at the Lowest Levels Transitioning to Asynchronous at the
Highest Levels

A Barbera RCS implementation employs periodic sampling and communication as opposed to
interrupt processing (for those processes executing within a backplane) in order to ensure
deterministic and verifiable behavior (in terms of execution time and response time), particularly
at the lowest levels of the architecture. This synchronous sampling approach has been
implemented using a simple software wait-loop or a synchronizing timer to establish the
"heartbeat" control cycle with commercially available real-time operating systems.

At higher levels of an implementation it is often convenient to transition to an asynchronous
communications technique. One obvious transition point is whenever the control system must
coordinate physically separate machines. For example a milling machine (Individual Machine
Level) might need to communicate over a local area or wide area network With its supervisor (a
workstation controller at the Workstation Level) or any of its peers (e.g., a robot, a conveyor,
etc.) in order to form a workstation group in a factory.

Asynchronous communications in RCS are handled by attaching a "handshake" identifier to every
buffer being transferred. The simplest mechanism used involves incrementing the identifier count
by one whenever a buffer contains new information. The receiver may then echo the identifier
number to confirm receipt of data. This mechanism is also useful in implementing fault detection,
isolation, and recovery. If a handshake is not echoed within some reasonable time (e.g., a "time-
out” value), this fact can be used in developing fault handling routines.
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SECTION 4. RCS PLANS

A plan is defined as, "a method of action or procedure; a design or scheme of arrangement”, in
[Ra 82]. Here, we define plan as a computer information model which specifies tasks or actions
to be performed (spatial and/or temporal procedures) and their precedence ordering. Rule plans
are uninstantiated plans (or plan schemas) which can be represented using some form of If-7hen-
Else construct. Rule plans specify branching conditions. Path plans are an ordered set of
instantiated poses, knot points, commands, or other variables specifying a sequential order of
execution. Path plans do not specify branching conditions. A rule plan is required to specify
conditions to be monitored in order to interrupt the execution of a path plan for branching (i.e.,
out-of-tolerance condition branching). A path plan can be generated by fully instantiating a rule
plan (assuming or given a time sequenced set of input conditions) and storing the result.

An RCS control system can be viewed as an integrated collection of finite state machines which
are capable of selecting or generating and executing RCS plans in real-time to cause an electro-
mechanical system to perform useful work. This requires a method of representing task
knowledge in plans and a set of integration and decomposition standards for distributing those
plans within the RCS hierarchy. The RCS Methodology described here uses both rule plans and
path plans.

Path plans are normally combined with rule plans in order to instantiate commands to be issued to
the next lower RCS level. Rule plans are used to monitor the state of the world to detect out-of-
tolerance conditions and path plans generate the next goal point to be achieved by a "move"
command assigned to a subordinate RCS level. )

Plans may be generated using numerous methods. Plans can be constructed by concatenating pre-
stored path plan fragments, plans may be generated by slightly modifying existing plans, plans may
be generated by algorithms, or by traversing a decision tree. Alternative plans can be retrieved
using an indexing strategy (hypothesis generation) from a plan repository, as in case based
reasoning systems, and evaluated according to some value judgment criteria sometimes called a
cost-benefit analysis or objective function. In most cases people develop rule plans off-line.
Alternatively rule plans could be developed interactively with computer assistance in near-real-
time. Path plans are often generated algorithmically in real-time without human input. They may
also be generated interactively on or off-line. Path plans are sometimes developed without human
interaction off-line. Algorithms used to generate path plans are almost always developed and
coded off-line.

4.1. Path Plans

Path plans can be generated by computing a trajectory, by applying some control law, or by
generating path "knot points" using a search based algorithm (e.g., A* search) operating within
some physical configuration space or in decision space. A path plan might resemble a musical
score, in that such a plan would contain a set of pose specifications (position or force, orientation,
velocity, etc.) usually occurring at regular intervals of time (a set of interpolated trajectory
points). An algorithm might also be used to traverse a "game tree" in order to select a "good" set
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of next moves. Path plans (i.e., algorithmically generated plans) are normally found at the
Elementary-Move, Primitive, and Servo levels of the RCS Architecture. The knot points specified
in a path plan are instantiated goals to be achieved by the finite state machine.

The RCS Methodology described here emphasizes applications which require rule plans
(representations of strategy, tactics or process knowledge). This implementation approach is
completely compatible with the use of path plans, as well, but we will not cover this topic at the
same level of detail in this paper.

4.2. Rule Plans

In the approach discussed here, we use state graphs and state tables to represent RCS rule plans.
These plans embody strategies, tactics and process knowledge also called plan schemas. A plan
schema is a set of uninstantiated rules for accomplishing some task. Rule plans are used
throughout the RCS Architecture. Rule plans are often very simple at the low levels and are often
more complex at the higher levels.

RCS State Graphs and Tables
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Figure 13.

Plans decompose tasks and goals (input commands) into temporal and spatial sequences of
subtasks to be performed by subordinate controllers at the next lower level in the hierarchy. Rule
plans can be represented as state graphs, as shown in Figure 13. Rule plans specify constraints
such as monitoring, threshold, and timing conditions which constitute events or edges in a state
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graph. One general plan failure condition that plans may incorporate is a plan time-out monitor.
An error status is returned to the higher level supervisory controller whenever a plan failure
condition occurs. Plans may specify the conditions for accepting human input as well as states
that require and request human input. Thus an edge in a plan might trigger a job list which
requests human input and another edge might specify transition conditions that cause the machine
to wait (by looping back) at the current state until a human response is received.

A servo loop may also be implemented in a state graph by an edge which loops back on a state
node. An edge can specify an If test on a sensor signal and a computation to instantiate a
command for an incremental actuator movement in response to the detection of an out-of-
tolerance condition. Such a servo loop can be used to continuously monitor and null a difference
signal according to a control law equation.

Edges or arcs in a state graph indicate both the prerequisites for transition from state to state
upon the occurrence of the next state clock cycle and the activities to be performed if those
prerequisites occur. Bubbles or nodes in a state graph define and name the allowable states a
finite state machine may enter. Normally each edge in a plan will initiate a list of jobs to be
accomplished as a result of satisfying the specified transition conditions. Upon initiating these
jobs, which are typically task commands to subordinate controllers and edge specific Sensory
Processing and/or World Modeling interim calculations, the machine steps to the next state. The
edges emanating from the next state are subsequently evaluated on the next control cycle (state
clock cycle).

Many real-time control problems can be solved by preplanning responses to the allowable input
condition space of a controller. Uninstantiated plan schemas, developed off-line, in the form of
state graphs can be stored in the plan repository for each input command allowed and each
possible exception condition. Such state graph plans can produce an amazingly complex set of
responses to a wide variety of input conditions by incorporating variables which are only
instantiated at execution time through sensory feedback. When these plans are executed in a
hierarchical RCS control system, each level only instantiates the current step in its plan at any
moment in time. As mentioned before, path plans are often combined with rule plans at the lower
levels of RCS. Path planners generate and instantiate "move" goal points, in real-time, (specified
as variables in the rule plan) and together they instantiate commands for the next lower level
subordinate. This produces a control system that can react to exception conditions very quickly
while also exhibiting very complex real-time intelligent behavior.

Since all levels of the hierarchy are sampling their input conditions and evaluating their rule plans
at the control cycle clock rate, the entire controller is extremely responsive, in a very organized
manner, to any changes or transitions at any level of detail throughout the entire system. This
response time capability (i.e., to essentially react to any change at any level within one control
cycle) is the basis of the "real-time" capability provided by the RCS system. It is the RCS
equivalent of event driven real-time context switching (i.e., interrupt handling). This response
time concept is as important to achieving real-time behavior as the concepts of layering the
hierarchy by orders of magnitude in timing horizons or measuring the length of time each
command takes to execute to completion within a controller module.
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4.2.1. RCS State Graphs

Figure 13 illustrates how rule plans may be represented in the form of RCS State Graphs and
corresponding State Tables. In Figure 13, bubbles (or nodes) are states and arrows are edges,
arcs, or transition events. An RCS state graph resembles a PERT chart in that it explicitly
represents the precedence of transitions between states. A finite state machine capable of
executing an RCS state graph must remember which state it is in, from control cycle to control
cycle, and it must evaluate each of the transition conditions specified by the state graph edges, on
each cycle. The machine then matches transition conditions to its current state to determine
which next state it must transition to on each control cycle. There is an implied (not shown) job
list associated with each edge in a state graph. The job list is often not shown in a state graph in
order to minimize clutter and to make it easier to draw the graph. A plan should not contain more
than roughly ten If-Then rules in order to make it easy to understand.

In the example shown, the plan transitions to state S1 on "New Cmd", to S2 on E3, to S4 on E7,
and it completes the principal decision sequence to "Done" on E9. A machine executing this plan
would follow this sequence if no exception conditions are encountered during execution. The
example shows exception conditions and wait or servo loops as follows: E2 loops back on state
S1 until E3 happens, ES loops on state S3 until E6, and E8 loops at state S4 until E9 occurs; In
addition an exception loop is shown as moving along E4 from S2 to S3 and E6 from S3 to S1.
These examples illustrate that a state graph is not simply a sequential set of steps, rather it is a
specification for a plan schema which can handle many combinations and permutations of events
over an indefinite time span. The plan schema is, however, completely deterministic in that it
specifies all recognized states and transition events.

The state graph in Figure 13 contains an edge labeled "otherwise". This means, if no match is
found on a given control cycle, initiate the job list associated with the "otherwise" edge and move
to the state pointed to by the edge. Often the "otherwise" condition contains a "no operation
(NOP)" instruction or job and the specified next state transition is to stay in the current state (no
change). In Figure 13, the "otherwise" edge loops back to state "*10" which illustrates this NOP
example. Ifthe "otherwise" condition represents an exception detection (e.g., an error) then a
controller executing this plan would issue an error status and it would transition to an exception
state in the state graph.

A shorthand notation is used to indicate "don't care" states, they are labeled with an "*" followed
by a number in Figure 13. "Don't care” states are not really states at all, they are simply a notation
convention. The equivalent state graph for a "don't care" state would be drawn with an edge
leading from every state in the graph to the state pointed to by the edge leaving the "don't care"
state.

There is a "don't care" state labeled "*0", in Figure 13, with an edge labeled "New Cmd" leading
from it into state "S1". This is our notation for the entry point into the plan. Whenever a "new"
command is received the finite state machine must immediately initiate the job list associated with
the "New Cmd" edge and transition to state "S1" in this example. Receiving a "new" command
has the effect of resetting the current plan to the entry point if the plan was already active. In
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RCS a handshaking communications protoco! employing command serial numbers is used to
distinguish between the receipt of a "new" command versus simply receiving the same command
buffer (no change) on subsequent control cycles. If the task command and its serial number have
not changed, it is considered to be a repeat of the last command and it will be ignored for
purposes of plan execution.

4.2.2. RCS State Tables

Figure 13 also shows a state table which is a one-to-one mapping of the state graph shown. The
state table is in the form of a list of If-Then rules. By mapping the state graph to a state table our
representation becomes one step removed from actual software code. The /f~Then rule table can
be implemented using a number of software language constructs such as if-then-else statements or
case statements. The table is organized in precedence order for evaluating event conditions
(edges). Each event is logically anded with the current state in precedence order from the top of
the list. A match (logical true condition) causes the plan to transition to the next state and initiate
(run) the job list associated with the triggering event. In our approach only the first match found
is acted upon during a control cycle. This process is repeated on each control cycle until the plan
reaches the "Done" state. After reaching "Done" a NOP is executed thereafter.

In this example we have labeled the event edges and the "don't care" states in precedence order of
evaluation. This makes it very easy to code the "don't care" states and to understand that "*0"
takes precedence over E1, E2 over E3, and so on. Also notice that the job list associated with
each edge in the plan is explicitly shown in the state table representation.

The RCS Executor is the function that evaluates events and interprets transitions in a state table.
RCS Job Assignment is the function that interprets and initiates (runs) the job list in a state table.

Appendix C provides examples of a state graph, a state table, and "C" code used to implement
them in our, DARPA sponsored, submarine automation demonstration project.
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SECTION S. IMPLEMENTING A CONTROLLER TEMPLATE, THE BASIC RCS BUILDING
BLOCK

Building understandable large systems designs requires defining systems integration standards. If
we can define a small set of primitive generic building blocks which can be replicated and
integrated using a concise set of integration standards, we are likely to have more success in
building even more complex systems structures. The ideal situation is to be able to build a
complex structure using a single standard type of building block.

The RCS implementation approach described here requires only two basic building blocks: An
RCS Controller Template and a Main Program Template. This section introduces the RCS
Controller Template concept.

Figure 9 shows a block diagram of a generic RCS controller module. This model complies with
the RCS Reference Model Architecture, presented earlier, in that it provides a software execution
structure within which the basic functions of Sensory Processing, World Modeling, and Behavior
Generation may be implemented. In addition this model begins to address the interface definitions
required to integrate a set of controllers to form an RCS hierarchy. The controller must be able to
accept task commands from its superior and send commands to its subordinates or to actuators if
the controller is at the lowest level of its branch in the RCS hierarchy. It must be capable of
accepting status from its subordinates and sending status to its superior. A controller module
must be capable of accommodating a human interface and it must have the capacity for
communicating with other controllers and the knowledge base through some set of Global
Memory communications mechanisms. A controller must also be capable of directly accepting
sensor data for processing.

Since a controller module is a finite state machine its response to stimulus is deterministic for any
given execution cycle. Its output is only a function of its current state and its input event space.
Furthermore its execution time can be measured or calculated for every event-state pair in a given
plan. Any algorithm implemented within a controller module must be designed to execute in a
cyclic manner, with a definite execution time for each execution cycle. Such an algorithm could,
however, be allocated any number of execution cycles in order to produce a solution or a set of
more and more optimum solutions on each subsequent execution cycle. An example might be an
algorithm that requires a number of sample points in order to converge on a solution within a
reasonable margin of error. Such algorithms often produce increasingly accurate results with each
new data sample processed.

5.1. Grouping JA, PL, and EX Functions

Figure 14 shows an RCS hierarchy constructed of linked sets of Job Assignment, Planner, and
Executor functions. Figure 14 extends the task decomposition diagram (Figure 5), discussed in
Section 2, in order to illustrate how the pattern of JA, PL, and EX functions conceptually repeat
in an RCS implementation. These patterns roughly delineate the RCS levels and they also denote
the opportunities for concurrency within a hierarchy. In practice, when implementing an RCS
compliant design, some controller nodes will often emphasize one sub-function over others.
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Planher
Executor

Job Assignment

Figure 14.

Obviously, an RCS hierarchy can be developed by implementing each JA, PL, and EX sub-
function as a separate software module. Each sub-function would still need some set of SP and
WM support functions in order to provide for closed-loop feedback. These could also be
implemented as individual software modules. Alternatively, we might group the repeating pattern
of JA, PL, and EX functions into a Behavior Generation function and group the BG function with
the necessary supporting SP and WM functions. This is attractive if we wish to develop a single
controller module template for use as an "integration wrapper". Using this approach we can still
implement the sub-functions as separate modules if we wish or they can be developed in any
combination which makes sense in a particular controller node instance.

We will consider two possible groupings of the JA, PL, and EX functions necessary to form a
Behavior Generation functional group. Both of these groupings contain a repeating pattern of JA,
PL, and EX functions. Both are also consistent with the RCS Architecture Reference Model, task
decomposition structure discussed earlier (see Section 2).

Figure 15 illustrates these two functional grouping structures side by side. In the first grouping
(Grouping#1) the BG function is formed by grouping JA, PL, and EX functions in a pattern
exactly like the one presented in the RCS Architecture Reference Model for task decomposition
(see Figure 5). Using this grouping pattern, concurrency (assigning tasks to be executed in
parallel by subordinates), occurs within a BG function, since JA is responsible for job
assignments. This pattern also suggests that a Behavior Generation functional grouping will
contain one JA and any number of pairs of PL and EX functions, depending on the number of
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concurrent tasks to be assigned to subordinate levels. Robot Systems Division researchers have
successfully implemented RCS designs (for the NASA FTS project and some others) containing
the two lowest levels of RCS (Servo and Primitive Levels) using this grouping pattern. This
grouping structure is not easy to replicate as a template, however, since it may contain an instance
dependent number of PL and EX functions for each JA.

Task Decomposition Hierarchy

Functional Grouping #1 Functional Grouping #2

Executor

RIAL Job Assignmient

Figure 15.

Grouping#2, in Figure 15, shows an alternate way of grouping the JA, PL, and EX functions.
The hierarchy resulting from this second grouping pattern is identical to the one shown for the
first grouping pattern, except at the top and bottom of the structure.

At the bottom of Grouping#2 the structure contains a redundant JA function as the leaf node of
each tree branch. This JA is redundant because, by definition, its subordinate will always be a
single actuator or "black box" device. Since only one subordinate will be directed by the leaf
node JAs, we could just as easily issue the commands from the EX function, as in Grouping#1.
The top of the Grouping#2 structure begins with a PL and an EX instead of a JA function as in
Grouping#1. By developing a controller module that emphasizes the JA function with trivial PL
and EX functions an equivalent top node can be implemented. The important point is that
functionally identical intelligent control systems applications can be designed using either of these
two structures.
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The Barbera approach uses Grouping#2 for the following reasons: 1) the repeating pattern is
always the same, (i.e., one PL, one EX, and one JA), 2) it is a simpler repeating pattern (fewer
functions are implemented per module) which results in simpler code, and 3) Concurrency
(assigning tasks to an indefinite number of subordinates to be executed in parallel) is handled at
the interface between groupings instead of within a grouping by issuing task commands to
subordinates using the GM communications primitives (write and read). These attributes combine
to make it relatively straight forward to create a single RCS Controller Module Template for use
as an RCS building block.
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Figure 16.

5.2. BG Decomposition

Figure 16 shows how a Behavior Generation function is further decomposed (within a controller
module) using the second grouping pattern option discussed above. The controller communicates
using a triple buffering scheme (through Global Memory) with other controllers, its supervisor, its
subordinates, its direct sensory inputs, and the human interface (I/F) for this level.

Using this pattern the controller module reads in its next task command, then the Planner runs
selecting or generating and passing a rule plan and/or a path plan to the Executor for instantiation.
The Executor cyclically executes the plan, stepping once (that is evaluating one set of GM inputs)
on each control cycle, and triggering appropriate Job Assignment functions. JA processing results
in generating commands for each subordinate as well as the posting of other outputs. In this
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implementation approach each RCS controller module may contain at most one BG function and
any number of SP and WM functions. The BG function, however, may encapsulate (or retrieve
from the knowledge base) any number of plans. At least one plan must exist (or the system must
be capable of generating a plan in real-time) for each task command the controller understands
and is responsible for acting upon.

5.3. The RCS Controller Template

The RCS Controller Template flow chart diagram in Figure 10 provides another view of the
process discussed above. Every controller module must be capable of communicating with other
modules in a manner which complies with the RCS Methodology tenets. One way to ensure
compliance is to replicate a standard RCS Controller Template incorporating all of the necessary
"hooks" for integration. This overhead structure is included in every module to make it easy for
humans to integrate modules and to understand and maintain the design. This is done even
though some of the overhead may not be needed in every controller module instance. A
controller module built from an RCS Controller Template performs Preprocessing, then Behavior
Generation (also referred to as Decision Processing), followed by Post-Processing on each control
cycle.

5.3.1 Preprocessing within a Controller Template

Preprocessing includes four types of subfunctions: Debug or overhead functions, World Model
functions, Sensory Processing functions, and other cyclic functions. These subfunctions are
cyclical, meaning they are performed on every control cycle no matter which plan the controller
module happens to be executing. On each control cycle Preprocessing reads in all of the input
buffers, which includes accepting commands from the next higher level (supervisory controller)
and it passes this information to its Behavior Generation (BG) function after some pre-
conditioning. The purpose of the pre-conditioning is to process the somewhat raw form of the
data in the input buffers into a more symbolic representation for testing in the state tables.

The Debug Preprocessing function is responsible for initializing any performance metrics to be
measured on each control cycle. The most basic of these is initializing the counters for measuring
execution time performance including the time it takes the controller to execute a given command
during the current control cycle as well as the minimum time and maximum time the controller
module has taken to execute any of its commands since reinitializing the entire system. Other
measures might involve keeping statistics on commands received, sensor reading change rates,
etc.

Preprocessing includes World Model functions such as computing predictions, evaluating status
reports from subordinates, determining the current operating mode, evaluating priorities, and
resources available, etc. These WM functions instantiate variables (i.e., numeric, logical and
string variables) and/or arrays of variables that are then passed to and used in Behavior
Generation and Post-Processing.

The Sensory Processing functions performed during Preprocessing include algorithms to filter and
pre-condition the incoming data stream, convert coordinate systems for data fusion, fuse data,
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compare World Model predictions to observed sensor data, and to set detection variables
according to established threshold conditions. All of these SP functions result in instantiating
variables to be used by Behavior Generation and Post-Processing. Again, the basic operation is to
prepare the high level symbolic variables for testing in the state tables.

Other cyclic functions performed during Preprocessing include running any algorithm which must
be computed cyclically, independent of the command (or plan) currently being executed. Often
path planners are computed cyclically at the lower levels of RCS. Other examples might include
simulation algorithms. Algorithms which require large amounts of CPU time can be segregated
and implemented in controller modules dedicated to running only one cyclic algorithm. In this
case the BG function typically includes rule plans for commands like initialize, run, pause, and
perhaps some other debug mode commands. Such controllers may be assigned to execute on
separate CPUs.

Preprocessing WM and SP functions might also be responsible for extracting data trends for use
and storage as historical traces. This might be thought of as implementing both short term and
long term memory. Historical trace variables are subsequently posted to Global Memory during
Post-Processing.

The controller module is also responsible for monitoring events which might require sending an
error status to its supervisor in response to an emergency condition or an exception condition.
Evaluating the world view for this purpose is normally done during Preprocessing. Behavior
Generation uses this information to produce error status reports that are then posted during Post-
Processing.

5.3.2. Behavior Generation within a Controller Template

The Behavior Generation (BG) function consists of three sub-functions: planning, execution, and
job assignment. When the BG function is implemented within a controller module it contains one
Job Assignment (JA) function, one Executor (EX) function and one Planner (PL) function.

5.3.2.1. Planner Functions

The Planner may perform rule planning or algorithmic path planning, or both. Rule planning
involves selecting options according to a set of rules by applying value judgments. Planners may
interact with the World Model to evaluate possible alternative plans against some value judgment
criteria. A Planner might hypothesize alternatives by selecting plans from the repository and using
the World Model to simulate and predict the performance of the plan based on current conditions
and recent historical traces. The result of this planner evaluation process becomes the basis for it
to select the best alternative plan for execution.

A Planner may also be implemented so that human input is required in making a plan selection or
in generating a new plan. If human interactive planning is done, all human interface I/O must be
non-blocking. Requests for human input are posted on each control cycle (along with a
handshaking serial number) as well as any data to be displayed. Human responses are read,
through Global Memory, in the same fashion.
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The most basic Planner simply matches the incoming task command identifier (from the next
higher level supervisory module) to the plans pre-stored in its repository. Upon finding a match
the Planner selects the plan and passes it to the Executor for instantiation and execution. If no
match is found then an error status is posted. In more complex planners, several optional plans
might be available in the repository to choose from.

Path planners typically generate plans containing at least two steps into the future and should be
limited to generating not more than roughly ten steps. Planners should be designed to operate
within a bounded planning horizon. One of the guidelines for designing planners and plans for an
RCS system is to limit the number of steps a path plan contains to roughly ten or less as well as
the number of branch points (decision points) in a rule plan. New plans generated or selected by a
Planner may be loaded into the EX function for immediate execution and/or stored in the plan
repository for reuse.

Planners and their supporting WM servers may need to draw upon historical traces stored in
Global Memory in order to generate or select future plans. These historical traces should contain
data samples covering a time span roughly equal to the future planning horizon for the plans to be
generated or used.

There must be at least one plan in the repository for every possible input command or the Planner
must be capable of generating a new plan in real-time. The Planner maintains in local memory the
identity (and serial number) of the currently active command. This function is performed using a
unique command identifier and a serial number to effect a handshaking communication with the
next higher level controller. .

5.3.2,.2. Executor Functions

The Executor (EX) is a reactive planner that is responsible for executing the current step of the
current rule plan on each state clock cycle by instantiating variables using inputs from Global
Memory (GM) and locally calculated results generated by the SP and WM functions during
Preprocessing as discussed above. The EX function is capable of executing plans (state graphs)
passed to it by the PL function. The EX function monitors its input event space generating an
event vector (using SP and WM calculations) to form a transition trigger event in the current plan
which in turn determines its next state. The EX initiates task specific SP and WM jobs as dictated
by the current plan whenever it transitions to a new state in a plan. The results of these SP and
WM calculations are stored as local interim values within the controller and/or as Global Memory
variables for use on subsequent execution cycles or by other controllers. These SP and WM
calculations constitute the event constraints and conditions necessary to instantiate and execute
the current step in the active plan.

If the Executor is executing a path plan it simply steps to the current knot point in the currently
active path plan (passed to it by the Planner), then it steps to the next knot point on the next
control cycle, and so on. As the Executor steps through the path plan it triggers the JA function
to generate a "move" command to the appropriate subordinate with this knot point as its next
goal.
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5.3.2.3. Job Assignment Functions

The JA function is responsible for generating outputs on each execution cycle. It must return
status to its next higher level supervisor and it forwards commands to each of its subordinates at
the next lower level as dictated by the task specific output list associated with each transition edge
in the active plan being executed.

A supervisory controller issues a new command with a new serial number to a subordinate under
three possible conditions: 1) when a subordinate reports that it has successfully completed its
last assignment and it is cycling, waiting for new input (subordinates are normally capable of
completing a ten step plan before their supervisor sends the next command), 2) upon receiving a
"new" command from its supervisor (the next higher level) requiring new tasks to be performed
immediately, and 3) in response to a transition event or error, including emergency conditions,
that may cause the supervisory controller to issue a new command before being notified by a
subordinate that the current assignment has been completed. Errors detected at this level in the
hierarchy or signaled by the status feedback from the next lower level are passed up the chain-of-
command so that the supervisor with the decision authority and the appropriate world view can
issue new commands to respond to the emergency.

5.3.3. Post-Processing within a Controller Template

Post-Processing may include Sensory Processing functions, World Model functions and Debug
functions. All controller modules build output buffers and post them to Global Memory during
Post-Processing. They also update local variables/pointers in preparation for the next control
cycle (e.g., current plan pointer, current state pointer, etc.). All controllers compute any required
performance measures like execution time during Post-Processing. In addition, any cyclic SP or
WM functions which need to be computed after Behavior Generation runs are performed during
Post-Processing.

It is during Post-Processing that the counter values are used to calculate the execution time of this
controller during this cycle, as well as the minimum and maximum length of time the controller
has taken to execute to completion while executing any of its commands since the RCS system
was reinitialized. Additional Post-Processing routines continuously compare the present
execution time of a command to its average, and if the command is taking significantly longer to
complete, these routines set status variables that may be used to alert the operator to problems
within detailed subtask activities, thereby focusing in on one or two hardware components or
objects that might be contributing to the delay. This provides one of the basic capabilities in real-
time fault diagnostics.

Other Post-Processing routines, especially in the lower level controllers which are issuing actuator

drive signals, act as intelligent watch dogs, checking that an actuator has not been left on too
long, or an incorrect combination of actuator commands has not been issued.
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5.4. Multi-Tasking on a Shared CPU, using a Main Program Template

Multitasking within a shared CPU is implemented in RCS with a CPU Main Program Template
(see Figure 11). The Main Program allows initialization of CPU parameters such as declaring
global variables (externals) and the loading of starting values in Global Memory, in preparation
for RCS execution. After initialization the Main Program begins running the heartbeat control
cycle for the CPU. First a Debug function runs to check for operator inputs indicating a change in
operating mode (e.g., debug single step, normal run mode, etc.) and to start a timer to measure
control cycle execution time. Once that completes each RCS controller module (including
simulation modules) runs in sequence according to the precedence order of the execution schedule
established by the programmer. Of course, in compliance with the RCS tenets, all of the
controllers must be able to complete their execution within the established heartbeat control cycle
time. If the controllers overrun the cycle time then the RCS designer must reassign one or more
to different CPUs or increase the cycle time.

At the end of each control cycle the communications controller modules are executed to exchange
Global Memory data with other CPUs within the backplane and over any networks being used.
The total execution time is calculated as a last step to be sure that the heartbeat control cycle time
has not been exceeded (a debug error is posted if it ever does). At that point the Main Program
enters a wait loop (or goes to sleep) until time for the next control cycle.

If a random access memory (RAM) board is installed in the backplane, Global Memory variables
can be declared as externals and buffered on the RAM board. If this is done and the host
operating system supports common memory declarations on a separate RAM board, then
communications between controllers on the backplane are handled as common memory
communications. )

If RCS is running within a real-time operating system environment, a preemptive high priority
timer interrupt can be used to wake-up the RCS Main Program for each control cycle. If this
technique is used the interrupt system must be turned-off upon entering the Main Program and
turned-on again when the Main Program goes to sleep. This technique could be used to allow
RCS to coexist with other (lower priority) applications within a conventional real-time interrupt
driven system.

If a particular RCS controller module requires significantly longer execution time (e.g., a module
doing complex planning), the preferred solution is to move it to a CPU with sufficient excess
computing time to accommodate it. If necessary this CPU may run with a longer heartbeat cycle.
Algorithms which are compute intensive and are atomic algorithms (i.e., they don't easily
decompose any further) are typically encapsulated in their own RCS controller module whose
only job is to cyclically execute the algorithm and post results in Global Memory. Such a
controller might accept only a single task command, run (in addition to the typical debug
commands like initialize, pause, calibrate, etc.). This technique of segregating compute "hogs" is
very effective in preserving the responsiveness of the overall control system while still
accommodating complex, compute intensive, algorithms.
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5.5. Handshaking

The RCS approach discussed here relies only on a handshaking mechanism to synchronize task
command and status communication between modules. We don't rely on the synchronous nature
of the "heartbeat" control cycle for this purpose. This handshaking mechanism is also applied to
all data shared (through Global Memory) between CPUs. This is done to allow the designer the
freedom to reassign controller modules to any CPU in the architecture without being concerned
about synchronizing the control cycles of every CPU. In fact, by using a handshaking protocol,
we can easily establish different control cycle rates for each CPU, if required. This also means
that the RCS design will actually run completely asynchronously if we choose not to impose a
synchronous heartbeat on each CPU (allowing every CPU to execute all of its assigned modules
as fast as possible with no control cycle "wait" mechanism).

A simple mechanism for implementing the RCS handshaking protocol is to increment a counter in
each controller module each time a new command is to be issued to a subordinate. In this way,
the count is used as a serial number which when appended to a command identifier (or any data
buffer) serves to uniquely identify each instance of the message type. This allows us to determine
when a command received is a "new" command as opposed to simply a repeat of the last
command received. If the serial number has changed it is a new command, if not it isn't. The
subordinate controller module echoes the serial number of the command it is working on in its
status reports. This is useful in matching completion status or error reports to the command being
executed.

If a heartbeat control cycle is being used a cycle count value can be incremented by the Main
Program to be used as a time-stamp, for time-out purposes, since the count will reflect the
number of control cycles which have passed and the heartbeat control cycle time is known. This
value is appended to every command and data buffer in addition to the handshake serial number.
Remember that the serial number only increments on issuing a new command or data buffer while
the control cycle value increments on every control cycle to keep track of the passage of time.
This can be very useful for implementing fault detection and isolation logic. Hardware failures
can be easily detected by using time-out monitors to alert the system that a particular controller is
no longer communicating. This type of mechanism is often called a "watchdog timer". This
technique can also be used to trigger the automatic or semi-automatic reconfiguration of
resources given the detection of a fault condition.

The watchdog timer capability can be implemented as follows. The cycle count value is
incremented each control cycle and placed in Global Memory by the Main Program running on
each CPU. This is the value each controller uses to recognize the relative control cycle time on
any CPU it is communicating with. The control cycle values on different CPUs don't have to be
synchronized as long as the normal buffer update rate is known. The update rate must take into
account any delays imposed due to the physical communications links being used for a given
command or data buffer. The cycle count value can be appended to each controller's output
buffers as a form of time-stamp of when those buffers were last communicated. The controllers
that read these buffers can compare the present clock cycle count value to the value appended to
the last data buffer received. If the difference gets too large (as compared to the known nominal
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update rate), it indicates that the data buffer has not been updated for some time, either because
of a problem with the sending controller or a communication link problem. Every controller can
test for this as part of a Preprocessing function, and watch for any significant delays occurring in
receipt of data. In this way, every controller has the capacity to watch other controllers they
communicate with, and they can immediately report delays they detect. This is another real-time
diagnostic attribute easily supported by the structure of the RCS Methodology.
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5.6. RCS Target Hardware

Figure 17 illustrates a typical suite of microprocessor hardware for implementing an RCS control
system. The block diagram shows a VME backplane multiprocessor system. Any multiprocessor
backplane hardware suite may be used (e.g., Multibus, Nubus, etc.). Bus extenders, such as
BIT3, can be used to expand a backplane, adding additional card slots. Many standard
commercial boards are available today for such systems at very reasonable prices. Such boards
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include: CPUs, RAM memory, interface cards for standard computer peripheral devices (e.g., disc
drives, CRTs, mouse, keyboard, printers, plotters, etc.), graphics boards, video boards, analog to
digital (A/D) and D/A boards, as well as local area and wide area network interface boards.
Software operating systems and device drivers are also widely available for these systems. Using
this type of hardware suite in an RCS implementation makes it very easy to tailor the hardware
selection and the communications network to meet the real-time requirements of the application.
It is also very easy to extend such systems as the system evolves. In addition, if the RCS software
is written using standard software language compilers such as "C", we can improve the prospects
for portability of the code to newer generations of hardware.

5.7. Required Operating System Services

An RCS implementation generally runs in a host operating system (OS) environment on a given

hardware platform. RCS requires the following operating system services and capabilities:
1) OS Kernel - The operating system should provide basic kernel services like scheduling
a designated user application program after boot-up (power on). The kernel should
provide interfaces to standard device drivers (discs, keyboards, mouse, CRT screen,
printer, plotter, etc.) for application programs.
2) Memory-Locking - the host operating system must allow a program or sub-program
to be defined as memory-locked. Locking a program in RAM memory guarantees its
existence and eliminates the need to roll programs into high speed RAM memory from a
mass storage device (a disc drive) at execution time. This allows programs to run with
very fast response times. The ability to spawn copies of programs during operation is of
little or no use in real-time applications, and is not required.
3) Timers - the host operating system should support timing facilities for maintaining
wall-clock time and a calendar. High speed timer precision, at the microsecond level, is
required for computing various performance measures previously discussed. Private
timers for use locally within a program are also useful.
4) Multiprocessor - The OS should support a multiprocessor environment, allowing
programs to be memory-locked on multiple CPUs in a shared backplane. The OS must
also support communications mechanisms such as common memory management for the
multiprocessor environment.
5) Communications - In addition to common memory management the OS should
support standard interprocessor communications such as mail boxes, datagrams, sockets,
etc., as well as standard local area network (LAN) and wide area network (WAN)
communications mechanisms (e.g., TCP/IP and Ethernet).
6) File Management - The OS should provide file management services for a mass
storage device (e.g., disc storage).

In addition to the services listed above, the following real-time operating system services are
useful but not required when implementing an RCS control system:
1) Interrupts - Real-time context switching driven by interrupt handling. The ability to
turn off interrupt handling within a program is required.
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2) Synchronization - Synchronization tools like semaphores, signals, clocked
synchronization and priority queues.

3) Preemptive scheduling - The ability to preempt lower priority processing to allow
higher priority tasks to run immediately with guaranteed response time.

Real-time applications must respond to the physical environment within some set of time limits.
This means that real-time applications (like RCS) must be able to guarantee that they exist in the
computing environment (memory-locking) at all critical times and that they can respond to
environmental stimuli within some "worst case” time limit. Generally this means that the RCS
application must be able to preempt and/or take over complete control of the computing platform
during real-time operation. Single user operating systems such as DOS can meet these
requirements as well as most real-time operating systems. Unix operating systems and other non-
real-time, time sharing, multitasking, operating systems, on the other hand, usually don't allow an
application (e.g., RCS) to take over control, therefore only operating systems with real-time (RT)
extensions (e.g., RT-Unix, Lynx OS, VxWorks, etc.) should be considered as host environments.
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SECTION 6. RCS METHODOLOGY DEVELOPMENT STEPS

The method steps listed in Table 1 begin with the definition of at least one conceptual design.
Such a conceptual solution would propose the use of some set of people, machines, actuators,
sensors, and an information structure to be organized into an integrated system, for operation
within one or more physical environments and aimed at addressing an overall highest level system
goal (see Figure 1). These RCS Method steps are intended to provide a procedural and systematic
approach to developing and implementing practical intelligent machine systems which would
typically perform some physical work in a given environment (e.g., operate a vehicle, produce
parts, perform construction or mining tasks, operate a sensor or weapon system, etc.). If several
competing conceptual designs exist, the method could be used to evaluate the feasibility and
expected performance of each design, as part of the engineering analysis and selection process.
The method might also be used to analyze the potential benefits and trade-offs which might result
from selecting among different system components within a particular conceptual design (e.g.
selecting different types or sets of sensors and actuators or integrating "black box" off-the-shelf
subsystems).

The methodology described in this paper should be interpreted as an iterative, "rapid
prototyping", real-time software development method. The steps listed in Table 1 are roughly in
the sequential order of a first pass through the method to achieve a skeleton of the overall RCS
architecture to be implemented. Once a skeleton is developed the developer(s) should iterate
within the steps to develop executable controller modules in a bottom-up process. As these
controller modules are developed, as executable code, their behavior can be studied and their
performance measured to further refine the control hierarchy. This process should involve
revisiting and revising the original problem description and requirements a$ well as the
organizational structure and definition of the RCS controller modules.

As the running system evolves it should be used as a tool to enhance the dialogue with the domain

experts and sponsors. By demonstrating the evolving system, developers, experts and customers
are better able to refine requirements and explicitly capture the domain expert's knowledge.
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Table 1. Summary of the RCS Methodology Steps

1) CONCEPT DEVELOPMENT
A) Gather domain knowledge.
a) Interview domain experts.
b) Define processes, object and workspace geometry, machine and load kinematics,
dynamics, and coordinate systems.
B) Develop the problem description / scenario
a) Define the goals and requirements of the control system.
b) Identify physical devices (actuators and sensors) to be controlled and the human
interfaces required.
¢) Illustrate the important spatial and geometric dimensions of the problem domain as well
as the their coordinate frames.
d) Define control system performance constraints.
¢) Describe the temporal span of control.
1. What minimum reaction time is required?
2. What is the maximum sampling rate required?
3. What will the longest planning horizon be?
C) Conceptualize the application in terms of:
- the RCS Controller Hierarchy,
- the Operator I/F System,
- the Data Management System and
- the Communications Management System.
a) Perform task decomposition engineering analysis of the RCS Controller Hierarchy
1. Define tasks, attributes, parameters, constraints, and procedures (scripts or plans),
including timing and synchronization at each hierarchical level.
2. Estimate the timing horizons for each level.
b) Perform Human I/F engineering analysis
¢) Perform Data Management System engineering analysis
1. Define the set of physical objects to be acted upon and list their relevant attributes.
2. Represent the objects and their attributes (including geometry) in world model
database structures.
3. Define a set of maps that represent the space in which objects reside, and in which
tasks on those objects will be performed. Define appropriate scale, resolution, and
coordinate systems for the maps at each hierarchical level.
4. Estimate the size of the data structures required and the update and retrieval rates
expected.
d) Perform Communications System engineering analysis
1. Define communications protocols, syntax, and semantics of messages between
control modules.
2. Estimate the size of the messages required and the frequency of message traffic
expected.
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2) DESIGN THE RCS HIERARCHY USING TASK DECOMPOSITION
A) Develop a task tree (hierarchical decomposition of tasks).
B) Choose a "thread" of tasks which span the task tree from the highest node to the bottom
of the tree.
C) Design the controller hierarchy by iteratively adding task threads in a rapid prototyping
fashion.
a) Define the set of agents (people, sensors and actuators) that will perform the tasks.
b) Organize and name a set of controllers in a hierarchy according to their respective
levels of authority and responsibility (supervisors and subordinates) for executing tasks
through the task agents.
¢) Define command verbs for each controller by mapping the task tree to the
organizational hierarchy of controllers.
D) Design controller software by adding design detail using generic RCS templates in a
bottom-up process.
a) Design state diagrams (plans) or scripts for each command verb.
b) Identify inputs
1. Command inputs.
2. Operator inputs
3. Status inputs.
4. World Model inputs (global parameters).
5. Sensor inputs.
c) Define Sensor Processing algorithms and other input preprocessing required.
d) Define World Model processing required.
e) Define post processing and outputs required (commands, messages and data to be
posted in the global memory).
f) Identify status reports required.
g) Identify parameters computed which should be included (posted) in Global Memory.
h) Identify command verbs to be output to next lower level (subordinates).

3) CODING AND TESTING RCS SOFTWARE
A) Incrementally develop code for each controller using generic RCS coding templates in a
bottom-up fashion.
B) Incrementally develop simulators to drive each controller in a closed-loop fashion.
C) Incrementally develop simulators for the human interfaces required.
D) Measure the performance of each controller in terms of execution time.
E) Map the controller modules (software processes) onto the computer hardware
(processors).
a) Measure the communications latency of messages flowing between hardware devices
(inter-board, intra-board, LAN and WAN communications).
b) Map processes onto processors by grouping closely coordinated modules.

4) PORT THE RCS SOFTWARE TO THE TARGET HARDWARE SYSTEM.

5) INCREMENTALLY INTEGRATE AND TEST THE RCS CONTROLLERS WITH THE ROBOTIC
SYSTEM'S SENSORS AND ACTUATORS.
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A) Perform lab tests.
B) Perform field tests.

6) DEVELOP A SIMULATOR TO ANIMATE THE ROBOTIC SYSTEM IN THE ENVISIONED PHYSICAL
ENVIRONMENT (WORKSPACE).

7) DESIGN, CODE AND TEST THE OPERATOR I/F SYSTEM, DATA MANAGEMENT SYSTEM AND
THE COMMUNICATIONS MANAGEMENT SYSTEM

8) INTEGRATE THE RCS CONTROLLER HIERARCHY WITH THE OPERATOR I/F SYSTEM, DATA
MANAGEMENT SYSTEM AND THE COMMUNICATIONS MANAGEMENT SYSTEM.

9) PRODUCE FINAL DOCUMENTATION FOR THE SYSTEM VERSION OR RELEASE.
10) ITERATE ALL OF THE STEPS ABOVE EXTENDING THE RCS SYSTEM, IN A "RAPID

PROTOTYPING" FASHION, BY ADDING NEW CONTROLLERS AND/OR PROCESSING MODULES TO
EXECUTE ADDITIONAL TASK THREADS.
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SECTION 7. CONCLUDING REMARKS

When discussing the RCS Method with people familiar with emerging software engineering
practices, we are often asked, "is RCS object oriented?" and "is RCS a functional
decomposition?". We will attempt to partially answer those questions here.

7.1. Is RCS Object Oriented?

The approach taken here can be viewed as an object oriented method, as defined by Coad and
Yourdon [Co 91], in that the objects used to drive the design (in a bottom-up fashion) are the
sensors, actuators, and the controller modules. The processes embedded within each controller
can be viewed as encapsulated methods. Further, controller objects can inherit execution and
communications methods from a generic controller template. In fact, several Robot Systems
Division researchers have experimented, achieving some success, with using object oriented
techniques to implement RCS designs. Using the Barbera RCS approach, the organization of the
controller module objects, for message passing and processing, is driven by the task
decomposition method (rather than data flow analysis) using an iterative top-down and bottom-up
design approach.

In implementing RCS a task tree is created that defines the set of command verbs each respective
controller object (nouns) must be able to execute. The services performed by the controller
objects include processing their input buffers on each control cycle and writing to output buffers
(commands, status and Global Memory variable updates) according to processing rules which can
be represented using state diagrams. This differs slightly from the typical object oriented approach
in that this decomposition is derived and analyzed by emphasizing control flow rather than data
flow analysis. Of course, both approaches result in specifying data flow and control flow, only the
decomposition technique emphasis is different.

It appears that the sensor processing object hierarchy needed to support the RCS development
method could also benefit from an object oriented analysis and design approach. Sensor
processing is concerned with answering the, "what is the state of the world?", question. The
ability to answer this question demands an organized representation of all of the objects which are
important to the goals of the robotic system. An object oriented approach addresses this
representation by forming a taxonomy of objects in successive layers of abstraction (see Figure 1).
Such a taxonomy can be represented very efficiently by using the notion of inheritance. Ina
machine vision example, at the bottom of the tree are pixels and point sources of sensor
information, the next layer is features, then surfaces, then objects, then groups of objects, etc.
Object oriented methods are very good at defining software processes that encapsulate knowledge
about these types of Sensor Processing and World Model objects.

The World Model clearly must bridge the gap between a sensory processing (object oriented)
view of the world and the task decomposition (control flow) view of the actions to be performed.
It seems clear that entity relationship diagrams and object oriented taxonomies should be
investigated as a means of representing a priori information to be stored in the World Model as
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well as any Global Memory data which must be stored as a historical trace (post priori, short term
and long term memory).

If one attempts to build object oriented taxonomies for the Global Memory databases, one
cautionary note is that in RCS, this knowledge must be distributed across the hierarchy of
controllers and may not wind up residing in one central database. This might frustrate an attempt
to combine traditional object oriented database design with RCS methods.

7.2. Is RCS a Functional Decomposition or a Structured Analysis Method?

We consider RCS to be a special case of functional decomposition. It is also very highly
organized and modular as is typical of structured methods.

The decomposition rules for RCS design concentrate on fask functions (physical actions to be
performed) rather than functions in general. More abstract functions such as Sensory Processing,
World Modeling, and Behavior Generation are distributed across the entire hierarchy of
controllers. Within each RCS controller module SP, WM, and BG functions are further
decomposed. In addition the sub-decomposition of SP, WM, and BG functions is accomplished
using a generic, replicating, template approach. In a more traditional functional decomposition
approach, SP, WM, and BG functions would typically be implemented as single large modules.
There are many other examples of abstract functions (e.g., safety, situation assessment, attention
focusing, execution monitoring, etc.) which are distributed by layers of abstraction and according
to timing or decision making horizons, in RCS. These functions might otherwise be implemented
as single large modules, with very complex inter and intra module communications, if we applied
traditional functional decomposition methods.

7.3. Conclusions

In this paper we have attempted to begin to define a consistent set of systems engineering rules
for building, evolving, and maintaining large, complex, intelligent control systems. We are
particularly motivated by the need to make the systems engineering development process more
compatible with the human thought process. The modularity guidelines presented recognize the
limited natural capacity of the human mind to understand and deal with concurrent tasks in a
complex real-time system. Our approach has been:

1) To develop an RCS Methodology based on the RCS Architecture Reference Model
developed by Albus, Barbera, and others over the last two decades.

2) To use task scenarios in the knowledge engineering process in order to capitalize on the
human associative memory capacity.

3) We have emphasized hierarchical organization as a powerful method of complexity
management.

4) We have selected cyclic sampling and the finite state machine as our execution model in
order to ensure our designs are deterministic and verifiable.

5) We have emphasized rule plan knowledge models (state graphs and state tables) which
are compatible with and can be directly executed by finite state machines.
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6) We have described a primitive communications mechanism (triple buffering and Global
Memory) which is compatible with cyclic sampling and provides for non-blocking I/O.
We have also described how other communications mechanisms can be implemented on
top of this primitive mechanism using communications controller modules.

7) We have defined generic RCS Controller Module Templates and the RCS Main
Program as our basic systems integration wrapper mechanism to simplify the development
and integration process.

8) We have presented an outline of a set of rapid prototyping steps which can be used as a
systems development life cycle approach.

There are many areas we haven't discussed in detail. Some of the important topics not fully
covered include:

1) How to develop the Sensory Processing algorithms required to answer the "what is?"
question.

2) How to develop the World Model "what is?" and "what if?" processing algorithms
required.

3) What methods to use and how to develop algorithms to handle the processing of
uncertain information (during Preprocessing) in order to recognize a transition event.

4) How to implement a complete communications network.

5) How to develop the human I/F system.

6) How to develop a database management system and populate it with information
models as well as data.

7) What information models to use for the object taxonomy, object geometry, track files,
and map files.

8) How to develop the simulation algorithms necessary.

9) How to develop the animation system.

10) How to deal with a shared physical resource. How to restructure the hierarchy
between control cycles in order to move a sub-tree from one supervisor to another in real-
time.

11) How to develop very high speed servo-loops for algorithmically complex control
system applications.

12) How to develop path planners and path planning algorithms.

These topics are not addressed in detail for two reasons. Because the objective of this paper is to
define how to organize a real-time control system architecture which can accommodate (provide a
home for) all of these functions while efficiently handling the problems of: managing complexity;
extensibility; resource contention; conflict resolution; verifiable, robust, deterministic, measurable
performance; closed-loop control; etc.; and because we still don't have all the answers.

The NIST Robot Systems Division is currently conducting a long term research program, called

the Intelligent Machines Initiative, which is focusing on Sensory Processing and World Modeling
for machine vision in particular as well as many of the other issues not addressed in detail here.
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Appendix - A. Controller Module Template, Example C Language Code
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Appendix - C. Example RCS Plan (State Graph, State Table, and C Language Code)
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Appendix C: A Propulsion Ahead State Table in C

/***********************************************************************

PURPOSE: This is the state table for the AHEAD command of this level.

***********************************************************************/

static void pr_ahead(void)

ST_BGN

ST

ST

ST

ST

new_command &&
(ship_dir == MOVING_AHEAD || ship_dir == STOPPED)
THEN
pr_cur_state = S1;
calc_fwd_prop_speed();
tb_co.command = TB_AHEAD;
tb_co.command_num ++;
tb_co.rpm = prop_speed;

new_command &&

ship_dir == MOVING_BACK

THEN
pr_cur_state = S2;
tb_co.command = TB_STOP;
tb_co.command_num ++;

pr_cur_state == 82 &&

tb_si.status == TB_DONE

THEN
pr_cur_state = S1;
calc_fwd_prop_speed();
tb_co.command = TB_AHEAD;
tb_co.command_num ++;
tb_co.rpm = prop_speed;

pr_cur_state ==S1 &&
tb_si.status == TB_DONE &&
sub_speed_status == BELOW_SPEED
THEN
++ prop_speed;
tb_co.command = TB_AHEAD;
tb_co.command_num ++;
tb_co.rpm = prop_speed;

pr_cur_state == S1 &&
tb_si.status == TB_DONE &&
sub_speed_status == ABOVE_SPEED
THEN
-- prop_speed;
tb_co.command = TB_AHEAD;
tb_co.command_num ++;
tb_co.rpm = prop_speed;



ST
pr_cur_state == S1 &&
tb_si.status == TB_DONE &&
sub_speed_status == AT_SPEED
THEN
pr.so.status = PR_AT_GOAL;
DEFAULT
ST_END



