

Optimizing Pharmaceutical Formulations

Rahil Verma

Intern for Dr. Rachel Ford

Biomedical Engineering/CS Student at Duke University

SURF Colloquium, August 1-3 2023

Background

- Protein drug formulations include active protein, preservatives, and surfactants among other excipients
- Surfactants used to keep protein dispersed evenly in solution
- Preservatives used to prevent microbial growth
- Ideally maximize antimicrobial strength while remaining evenly dispersed in solution

Poloxamer 188 8780 g/mol $x = z \approx 80$; $y \approx 30$

- Protein drug formulations include active protein, preservatives, and surfactants among other excipients
- Surfactants used to keep protein dispersed evenly in solution
- Preservatives used to prevent microbial growth
- Ideally maximize antimicrobial strength while remaining evenly dispersed in solution

Poloxamer 188 8780 g/mol $x = z \approx 80$; $y \approx 30$

Benzyl alcohol

Problem

- Surfactants used to stabilize protein
- Surfactants and preservatives are aggregating below solubility limits
 - Phenol solubility is 84 mg/mL
 - Poloxamer 188 solubility is > 400 mg/mL
- Aggregation → less stable → degrade function, trigger immune response

Turbidity boundary @ 7 mg/mL phenol

Benzyl alcohol

Poloxamer 188

Goal

- Create phase diagrams at varying conditions (Clear/Turbid)
 - Turbidity boundary is the first sample in phenol spectrum to exhibit turbidity
- Investigate impact of surfactants, preservatives, and temperature on stability of formulation
- Provide pharmaceutical industry with range of stable concentrations

Turbidity boundary @ 7 mg/mL phenol

Effect of Benzyl Alcohol

- Used as preservative
- Combined w/ phenol = more effective antimicrobial while below dose limits
- Decreases turbidity boundary by 0.28 mg/mL phenol per 1 mg/mL increment of benzyl alcohol

- Commonly used as a surfactant
 - Consistency in production
 - Not susceptible to hydrolysis
- Increases turbidity boundary by 0.26 mg/mL phenol per 1 mg/mL increment of P188

- Commonly used as a surfactant
 - Consistency in production
 - Not susceptible to hydrolysis
- Increases turbidity boundary by 0.26 mg/mL phenol per 1 mg/mL increment of P188
- Drug formulations typically use 0.2–0.6 mg/mL P188

- Below 0.05 mg/mL P188 opposite effect occurs
 - In absence of poloxamer 188 turbidity boundary ~80 mg/mL phenol
 - But poloxamer 188 increases turbidity boundary

*Not a fitted curve

$$H = O$$
 $X = O$
 X

Benzyl alcohol

Poloxamer 188

Effect of Temperature

- Heating hydrophobic molecules like phenol and benzyl alcohol helps dissolve in water
- Poloxamer 188 has opposite relationship, T ↑ solubility ↓
- Which effect is most prominent?

Poloxamer 188 micelle

H = O X

Benzyl alcohol

Poloxamer 188

Effect of Temperature

- Heating hydrophobic molecules like phenol and benzyl alcohol helps dissociation in water
- Poloxamer 188 has opposite relationship, T ↑ solubility ↓
- Which effect is most prominent?
- Temperature decreases turbidity boundary

H = O X

Benzyl alcohol

Poloxamer 188

Effect of Temperature

- Two regimes of turbidity
- 37 °C is critical micelle temperature for poloxamer 188
- Hypothesized mechanism for aggregation:
 - Poloxamer 188 T ↑ solubility ↓
 - Phenol prefers polypropylene oxide block over water

Conclusion

- Provide a range of stable concentrations for pharmaceutical use
- Pharmaceutical formulations typically:
 - 0.2–0.6 mg/mL poloxamer 188
 - 9 mg/mL benzyl alcohol
- Phenol < 7 mg/mL

Acknowledgements

- Center for High Resolution Neutron Scattering, funding the SURF program at the NCNR
- Dr. Rachel Ford, amazing mentor
- The friendly scientists and staff at the NCNR

Experimental Design

- Create samples varying phenol, poloxamer 188, and benzyl alcohol
- Place in temperature bath
- Record phase (T/C) at varying temperatures
- All samples repeated at least once for reproducibility

- Below 0.05 mg/mL
 P188 opposite effect occurs
 - In absence of poloxamer
 188 turbidity boundary ~80
 mg/mL phenol
 - But poloxamer 188 increases turbidity boundary
- Turbidity likely caused by micellization

*Not a fitted curve

0.2 mg/mL poloxamer 188

0.025 mg/mL poloxamer 188

$$H = O$$
 $X = O$
 X

Poloxamer 188 Molecular weight: 8780 g/mol

Polysorbate 20 Molecular weight: 1226 g/mol

$$HO(O)_{z}OOO$$

$$WOH$$

$$W+x+y+z=20$$
Polysorbate 80

Molecular weight: 1310 g/mol