Focused Helium and Neon Ion Beam Induced Deposition: Examination via a 3D Monte Carlo Simulation

<u>Philip D. Rack</u>

Department of Materials Science and Engineering, The University of Tennessee Center for Nanophase Materials Sciences, Oak Ridge National Laboratory prack@utk.edu

FCMN 2013, Gaithersburg MD, March 26, 2013

Acknowledgements

- SRC (Bob Havemann Program Manager)
- Intel (Ted Liang)
- Zeiss Inc. (Lewis Stern, Huimeng Wu, David Ferranti)
- Omniprobe (Tom Moore, Cheryl Hartfield)
- Delft University of Technology (Paul Alkemade)
- UT/ORNL (Rajendra Timilsina, Carlos Gonzalez, Nick Roberts, Jason Fowlkes)

A. Gaseous precursor injected and adsorbs on the substrate
B.Ion beam induced precursor decomposition
C. Target and impurity atoms incorporate into the film, while (some) volatile by-products desorb

IBID/EBID – Applications/Limitations

electron (5x10⁻⁴ amu), He (4 amu), Ne (20 amu), Gallium (70 amu)

- Applications for Nanoscale Direct-Write
 - Circuit Editing
 - Lithography Mask Repair
 - Metrology Preparation
 - Nanoscale Device Prototyping
- Limitations
 - Materials purity
 - Proximity effects
 - Beam induced damage

(b) FEBID Pt depo

EnvizION History

Confluence of IONiSE and EBID Simulation

•Three dimensional ion, precursor, and SE routines •Langmuir adsorption, random walk surface diffusion •Tracks deposited species •Light and heavy ions •Nuclear and electronic energy loss (separate thermal spike model) and new recoil/sputtering

Experiment vs. Simulation

25keV He+ beam, ~ 1.3×10⁻² mbar (CH3)3Pt(CpCH3), variable current, constant growth

Constant Dose (6pC) ↑ i ↓ rate ↑width

Constant growth height (variable dose) \uparrow i \downarrow rate \uparrow width

P. Chen, E. van Veldhoven, C. Sanford, H. Salemink, D. Maas, D.A. Smith, P.D. Rack, and P. Alkemade, *Nanopillar growth by focused helium ion beam induced deposition*, Nanotechnology Vol. 21 no. 45, 455302 (1-7) (November 2010).

Current Dependent Growth

<u>1 pA</u>

<u>9 pA</u>

• Higher current reduces overall growth efficiency

• Vertical growth rate (controlled by PSI) is reduced more than the lateral components(SEI, SEII, FSI) \rightarrow broader pillars.

Current Dependent Growth: Surface coverage

Helium versus Neon Beam Induced Deposition

~ 1×10⁻² mbar (CH3)3Pt(CpCH3), 20 keV, current 10 pA, 1 nm pixel spacing, 10µs dwell time

Wu et al, Nanotechnology, in press (2013)

resistivity (~3.5x10⁴ $\mu\Omega$ -cm)

resistivity (~600 $\mu\Omega$ -cm)

Temperature dependent Electrical properties

- NeBID \rightarrow Lower resistivity
- NeBID → Strong tunnel coupling granular metal
- HeBID → Weak tunnel coupling granular metal

TEM Analysis of HeBID and NeBID samples

- Slightly larger Platinum grain sizes with more coalescence in NeBID than HeBID
- Diffraction peaks increased with increasing dose in both HeBID and NeBID
- NeBID shows higher diffraction peaks than HeBID

Helium vs Neon ions simulations

To understand the observed microstructure and resultant electrical properties, we simulate the ion solid interactions

Nuclear Energy loss per volume (25keV, 100k ions) *Note different scale

Higher nuclear energy loss for Neon -> the observed coarsening and coalescence and the significantly enhanced electrical conduction

14

Summary of He vs. Ne IBID

<u>Dubner et al</u>

- Ion beam induced growth rate of dimethyl gold hexafluoroacetylacetonate with various inert ions
- Enhanced growth rates with heavier inert ions and lower energy
- Contribution of both binary collisions and thermal spikes models

Dubner et al, J. Appl. Phys. 70 665 (1991)

Present Work

- Facilitates the enhanced platinum clustering
- Pt mobility coarsens (and coalesces) the Pt grain size
- Dramatically affects the granular metal tunnel coupling and enhances the electrical conduction through the material.

1		inperature fi		i spike mode
	HeBID		NeBID	
	1 ps	5 ps	1 ps	5 ps
	1450 K	130 K	3860 K	350 K
$\Delta T = \frac{E}{8(\pi \alpha t)^{3/2} \rho C_p}$				

Estimated Temperature rise via thermal spike model

Low Resistivity Cobalt HeBID

Wu et al, Journal of Materials Science: Electronic Materials (submitted)

Summary

*Pure hcp cobalt (no detectable Carbon!

- *10nm lateral resolution
- *good step coverage
- *Grain size ~ 6 (\pm 2) nm
- *64 $\mu\Omega$ -cm resistivity
- *specific contact resistivity of 0.03 $\mu\Omega\text{-}cm^2$

TEM/EELS

150

50

450

350

250 Energy Loss (eV)

EUV Mask Repair

- Nickel being explored as EUVabsorber material
 - Difficult to etch due to limited volatility of etch products
 - Electron beam induced etching not successful so far
 - Explore focused He and Ne beam induced etching

No observable He sputtering (16keV), but significant damage to Mo/Si reflector stack

TEM Analysis vs. Nuclear Energy Loss (30keV)

TEM Analysis vs. Nuclear Energy Loss (16keV)

16 KeV, 1x10¹⁷ He/cm²

Ni 20 0 50 Mo/Si multilayer 100 150 Onth

Very Good Agreement between Energy Dependent Damage Depth Threshold Simulated Nuclear Energy Loss (30keV)

Neon Etch of Nickel Absorber Layer in EUV Masks

SEM Image of Etching

- 50 nm Nickel
- On 100nm SiO₂
- Substrate = Si
- Dose = 1.5 nC/μm²
- Beam Current = 2.5 pA
- Size = 1 μm × 1 μm

Monte Carlo Simulation of Nickel Sputtering Ne versus He Neon Helium

- Surface Binding Energy = 4.4 eV
- Beam Energy = 10 keV

Beam Radius = 0.5 nm 100k ions

Evolution of via etching (10 keV Ne) 10k ions, Beam Radius = 0.5 nm

Sputtering by Neon ions [middle slice]

Redeposit

Empty

Sputtered

Filled

Sputtering by Neon ions [middle slice]

Redeposit

Empty

Sputtering by Neon ions [middle slice]

Filled Sputtered Redeposit Empty

Sputtering by Neon ions [middle slice]

Filled Sputtered Redeposit Empty

Sputtering by Neon ions [middle slice]

A Peek into the Future

The Three Beam – Electron-Ion-Photon Beam System

Synchronized Laser Assisted EBID/IBID

<u>microscale</u> gas delivery, <u>microscale</u> photon delivery and <u>nanoscale</u> electron delivery

<u>ns to ms photon pulsing makes it possible to reach a high surface temperature</u> locally with sufficient time for refresh (tens to 100ms)
Up to ~ 200 kW/cm² irradiance

• desorption is stimulated below the thermal decomposition temperature (avoid microscale chemical vapor deposition)

Laser Delivery System (built by Omniprobe®): Laser Assisted EBID

Recent Results

Pt LAEBID from (CH₃)₃Pt(CpCH₃)

*Enhanced purity (PtC₈ → PtC₂)
*Higher resolution (~ 25 %)
*4 orders of magnitude lower resistivity
*Optimized growth at monolayer synchron.

W LAEBID from W(CO)₆

N.A. Roberts et al., Angewandte Chemie, To be submitted

*Enhanced purity (10 at% W → 55% W)
*Higher resolution (~ 30%)
*~3 orders of magnitude lower resistivity
*Optimized growth at monolayer synchron.

Summary and Future

- Focused Helium and Neon Beam Induced Processing Promises to Facilitate Advanced Circuit and Mask Repair
- Understanding Fundamental Ion-Precursor-Solid Interactions is Critical for Advanced Nanoscale Fabrication
- We Employ a Combined Experimental and Simulation Approach to Advance the State of the Art Beam Induced Processing
- Laser Assisted Beam Induced Processing Has Promise (couple to He and Ne soon!)
- The Future is Bright!

