"BEST VALUES" OF CUP-BURNER EXTINGUISHING CONCENTRATIONS

Robert E. Tapscott Center for Global Environmental Technologies The University of New Mexico Albuquerque, NM X7106-4339 USA

INTRODUCTION

In March 1997, the National Fire Protection Association (NFPA) Technical Committee on Halon Alternative Protection Options established the NFPA Standard 2001 Cup Burner Data **Task** Group. The Task Group's mandate is to (1) assess cup-hurner data for all agents in or proposed for the NFPA 2001 Standard [I]; (2) determine whether meaningful "best values" can be deduced; (3) determine what data (if any) should go into the next edition of the Standard; and (4) establish procedures for future submission of cup burner data for to the NFPA 2001 committee. This paper presents tlic cup-burner extinguishment data collected and assessed to date by the Tusk Group.

DATA COLLECTION AND ASSESSMENT

To date, the Task Group has reviewed data submitted by the following organizations for 323 agent/fuel combinations, each data point represented an average of 2 to 35 determinations.

3M Company, St. Paul, Minnesota, USA Ansul Incorporated, Marinette. Wisconsin. USA Kidde-Fenwal, Inc., Ashland, Massachusetts, USA Koatsu Company Ltd., Itami, Hyogo, Japan Mainstream Engineering Corporation, Rockledge, Florida, USA National Institute of Standards and Technology, Gaithersburg, Maryland, USA National Research Institute of Fire and Disaster, Tokyo, Japan New Mexico Engineering Research Institute, Albuquerque, New Mexico, USA US Naval Research Laboratory, Washington, DC. USA Verband der Schndenversicherer e.V., Köln, Germany

Of these 323 agent/fuel combinations, 263 were for the thirteen agents in the NFPA 2001 Standard [1] or proposed for future editions of this standard (Table 1). The data review resulted in selection of 158 "best values" for cup-burner extinguishing concentrations. which included the fuels shown in the following list. The "best values" include no data from apparatuses differing significantly from that being considered for the International Standards Organization (ISO) standard on gaseous fire extinguishing agents [2] and for future editions of the NFPA 2001 standard (Figure 1) except where no other data are available. Although both the NFPA planned standard and the ISO draft standard require a fuel temperature of 25 ± 1 °C, the Task Group accepted data for fuel temperatures of 25 ± 5 °C and. where no fuel temperature was given, took the reported air temperature as the fuel temperature. These variations were made to obtain sufficient data for evaluation. It is believed that these deviations are unlikely to cause significant variations. To date, no data submitted to the Cup Burner Data Task Group have niet the proposed ISO or NFPA standard requirements for both apparatus and method.

Agent	Formula	Chemical Name
FC-218	CF ₃ CF ₂ CF ₃	octafluoropropane
FC-3-1-10	$CF_3CF_2CF_2CF_3$	decafluorobutane
FIC-13I1	CF ₃ I	trifluoroiodomethane
HCFC Blend A		
82% HCFC-22	$CHClF_2$	chlorodifluorornethane
9.5% HCFC-124	CHClFCF ₃	2-chloro-1,1,1,2-tetrafluoroethane
4.75% HCFC-123	CHCl ₂ CF ₃	2,2-dichloro-1,1,1-trifluoroethane
3.75% additive	$C_{10}H_{16}$	isopropenyl-1-methylcyclohexene
HCFC-124	CHClFCF ₃	2-chloro-I,1,1,2-tetrafluoroethane
HFC-125	CHF_2CF_3	pentafluoroethane
HFC-227ea	CF ₃ CHFCF ₃	1,1,1,2,3,3,3-heptafluoropropane
HFC-23	CHF_3	trifluoromethane
HFC-236fa	CF ₃ CH ₂ CF ₃	I,1,1,3,3,3-hexafluoropropane
IG-01	Ar	argon
IG-100	N_2	nitrogen
IG-541		
52% N ₂	N_2	nitrogen
40% Ar	Ar	argon
8% CO ₂	CO_2	carbon dioxide
IG-55		
$50\% N_2$	N_2	nitrogen
50% Ar	Ar	argon

TABLE 1. AGENTS IN OR PROPOSED FOR NFPA STANDARD 2001.

List of fuels for which at least some "best values" have been determined:

70% isopropanol in water 80% MeOH/20% n-heptane acetone acetonitrile aviation gas, 100 octane benzene carbon disulfide cyclohexane diesel diesel no. 2 diethyl ether ethanol ethyl acetate ethylene glycol Exxon Turbo Oil gasoline (unleaded)	heptane (commercial) hydraulic oil (Mobil 350) hydrogen isobutanol isooctane isopropanol Jet A/JP-5 JP-4 kerosene methane methanol methyl isobutyl ketone morpholine n-butanol n-butyl acetate n-decane	n-dodecane n-heptane n-hexane n-octane n-pentane n-propanol n-undecane natural gas nitromethane propane pyrrolidine tetrahydrofuran toluene transformer oil xylene
---	---	--

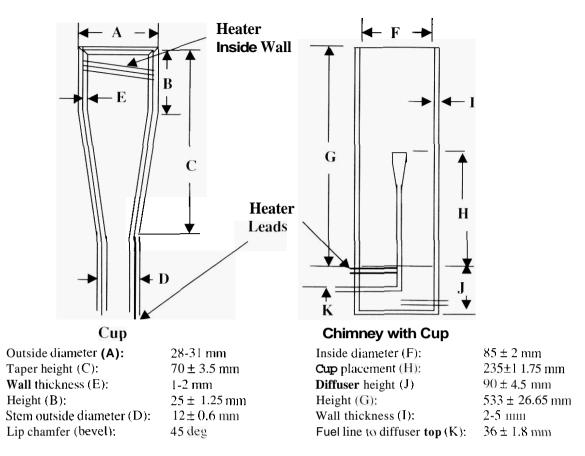


Figure 1. Proposed standard cup burner with dimensions.

RESULTS

Table 2 (which includes Halon 1301 data for comparison) gives the "best values" for cup-burner concentrations in percent by volume (vol.%) with the standard deviations (where there is more than one source) and, in parentheses, the number of sources. The standard deviations give only the data variation between sources and do not include the scatter among the individual determinations averaged to give the data submitted. As noted earlier, where data were available for any agent/fuel combination from both cup burners near that proposed in the draft ISO and NFPA standards, and non-standard cup burners, only the former data were used. Where non-standard cup-burner data were available, these were used; such data are indicated by a footnote.

The draft ISO and proposed NFPA standards require that extinguishment concentrations be determined at increasing air flow rates until a platcau is reached where there is no further increase in extinguishment concentration. Despite this requirement. there is evidence that over **a** wide range of air tlow rates, these Concentrations are invariant [3]. Nevertheless, the cup-burner extinguishment concentrations determined using the newer "plateau" procedure appear to be higher than earlier values in the only two cases where comparisons are possible. In Table 3. the number of determinations are enclosed in parentheses; brackets denote the air flow rates in L/min. An increase in extinguishment concentration. The differences are, however, small and the number **of** comparisons, very limited. Nevertheless, values determined by the plateau method are separated and given in brackets (Table 2).

Fuel	Halon 1301	FC-2 18	FC-3-1-10
70% isopropanol in water			
80% methanol/20% n-heptane	5.8 (1)		
acetone		[6.3 (1)]	[5.2(1)]
acetonitrile			
aviation gas, 100 octane, low lend			
benzene	2.4 (1)		3.4 (1)
carbon disulfide			
cyclohexane			
diesel			
diesel no. 2			
diethyl ether			
ethanol	$4.3 \pm 0.0(2)$		6.9±0.0(2)
ethyl acetate			
ethylene glycol			
Exxon Turbo Oil			
gasoline (unleaded)			
heptane (commercial)	3.2 (1)		
hydraulic oil (Mobil Fluid 350)			
hydrogen			
isobutanol			
isooctane			
isopropanol			
Jet A/JP-5			
JP-4			
kerosene	3.4 (1)		5.0(1)
methane			
methanol	7.8(I)		8.0(1)
methyl isobutyl ketone			
morpholine			
n-butanol			
n-butyl acetate			
n-decane	3.9 (1)		
n-dodecane	3.7(I)		
n-heptane	3.4 ± 0.0 (2)	$6.1 (1)^{a}; [6.5 (1)]$	5.3 ± 0.0 (2) [5.5 (1)]
<i>n</i> -hexane			
n-octane	3.4 (1)		
n-pentane			
n-propanol			
<i>n</i> -undecane			
natural gas			
nitrornethane			
propane			
pyrrolidine			
tetrahydrofuran			
toluene	2.3 ± 0.0 (2)		3.6 ± 0.0 (2)
transformer nil	2.3 (1)		5.4(1)
xylene			

TABLE 2. "BEST VALUES" OF CUP-BURNER CONCENTRATIONS, VOL.%.

"Nonstandard cup burner.

Fuel	FIC-1311	HCFC Blend A	HCFC-I24
70% isopropanol in water			
30% methanol/20% <i>n</i> -heptane			
acetone		$10.0 \pm 0.7 (2)^{a}$	
cetonitrile		7.0 (1) ^a	
viation gas, 100 octane, low lead		$11.4 \text{f} 0.1 (2)^{a}$	
enzene			
arbon disulfide			
yclohexane		$10.1 \pm 0.3 (2)^{a}$	 (1) (1)
iesel			6.8 (1) ^a
iesel no. 2		9.6 (1) ^a	
iethyl ether			
thanol			
thyl acetate		10.6 (1) ^a	
thylene glycol xxon Turho Oil		$11.1(1)^{a}$	
		17 Z 🛝	7 <i>5 (</i> 1) ⁸
asoline (unleaded) eptane (commercial)		'1.7 (I) ^a	7.5 (1) ⁴
ydraulic oil (Mobil Fluid 350)			
-			
ydrogen sobutanol		$20(1)^{a}$	
sooctane		$9.8(1)^{a}$	
sopropanol		$10.6(1)^{a}$	
et A/JP-5		$0.0(1)^{3}$	$6.9(1)^{a}$
P-4		10.1 (1) ^a	0.7 (1)
crosene		10.1 (1)	
nethane		13.7 (1) ^a	
ethanol		$16 \pm 0.5 (2)^{a}$	
nethyl isobutyl ketone		9.4 (I) ^a	
orpholine		$13.7(1)^{3}$	
-butanol		$12.2(1)^{a}$	
-butyl acetate		$9.8(1)^{a}$	
7-decane		· · ·	
-dodecane			
-heptane	$3.2(1)^{a}$	$9.9 \pm 0.0 (2)^{a}$	$6.7 \pm 0.3 (3)^{a}$
-hexane		$11.0 \pm 0.1 (2)^{a}$	
-octane			
-pentane			
-propanol		$10.6(1)^{a}$	
-undecane	3.8 (1)		
atural gas		$12.4(1)^{a}$	
itromethane			
ropane		$12.6(1)^{a}$	
yrrolidine		$10.1(1)^{a}$	
trahydrofuran		$12.0(1)^{a}$	
oluene		$7.4 \pm 0.7 (2)^3$	
ansformer oil		<u>.</u>	
ylene		x.7 (1) ⁴	

^a Nonstandard cup hurner.

Fuel	HFC-125	HFC-227ea	HFC-23
70% isopropanol in water 80% methanol/20% <i>n</i> -heptane acetone		8.3 (1) ^a 6.5 (1)	
acetonitrile aviation gas, 100 octane, low lead benzene		4.8 (1)	I0.6 (I)
carbon disulfide cyclohexane diesel			
diesel no. 2 diethyl ether		8.0 ± 0.2 (3)	16 ± 0.0 (2)
ethanol ethyl acetate ethylene glycol Exxon Turbo Oil		8.0±0.3 (3)	10 ± 0.0(2)
gasoline (unleaded) heptane (commercial) hydraulic oil (Mobil Fluid 350) hydrogen		6.7 (1)	12.6±05(2)
isobutanol isooctane isopropanol Jet A/JP-5			11.3 (1)
JP-4 kerosene		6.4 (1)	12.5 (1)
methane methanol methyl isobutyl ketone		9.7 ± 0.4 (2)	19 (1)
morpholine n-butanol <i>n</i> -butyl acetate n-decane			
n-dodecane ri-heptane ti-hexane ti-octane <i>n</i> -pentane <i>n</i> -propanol ii-undecane	$8.9 \pm 0.3 (2)^{a}$	6.6 ± 0.0 (4)	13.0±0.2 (3)
natural gas nitromethane propane			
pyrrolidine tetrahydrofuran toluene transformer oil xylene		4.8 ± 0.3 (3) 6.6 (1)	9.7 ± 0.0 (2) 12.8 (1)

TABLE 2. "BEST VALUES" OF CUP-BURNER CONCENTRATIONS, VOL.%. (cont.).

^a Nonstandard cup burner.

Fuel	HFC-236fa	IG-01	IG-100
70% isopropanol in water			
80% methanol/20% <i>n</i> -heptane			
acetone		38 (1)	29(1)
acetonitrile		33 (1) ^a	
aviation gas, 100 octane, low lead		32 (1) ^a	
benzene			31(1)
carbon disulfide			
cyclohexane		$36(1)^{a}$	
diesel			
diesel no. 2		27 (1) ^a	
diethyl ether		45(1)	34(1)
ethanol		41(1)	35 ± 2.7 (3)
ethyl acetate		$35(1)^{a}$	× •
ethylene glycol		$31(1)^{a}$	
Exxon Turbo Oil		x - /	
gasoline (unleaded)		$37(1)^{a}$	
heptane (commercial)			
hydraulic oil (Mobil Fluid 350)		$26(1)^{a}$	
hydrogen		20 (1)	
isobutanol			
isooctane			
isopropanol		$35(1)^{a}$	
Jet A/JP-5		$32(1)^{a}$	
JP-4		$32(1)^{a}$	
kerosene			30(1)
methane		$35(1)^{a}$	50(1)
methanol	$8.0(1)^{a}$	52 (1)	41 ± 3.5 (2)
methyl isobutyl ketone	0.0(1)	52(1)	$41 \pm 5.5 (2)$
morpholine		$38(1)^{a}$	
<i>n</i> -butanol		$36(1)^{a}$	
		50(1)	
<i>n</i> -butyl acetate ii-decane			34(1)
<i>n</i> -dodecane			34(1) 33(1)
	62104(2)8	42 = 14(2)	
<i>n</i> -heptane	$6.3 \pm 0.4 (3)^{a}$	$42 \pm 1.4(3)$	$33 \pm 1.6 (3)$
<i>n</i> -hexane		40(1)	31 (1)
<i>n</i> -octane			34(1)
ii-pentane			30 (1) ^a
ii-propanol			22.412
<i>n</i> -undecane			33 (1)
natural gas		5 4 4 1 8	
nitromethane		34 (1) ^a	
propane		40(1) ^a	
pyrrolidine			
tetrahydrufuran			
toluene		33 (1)	$25 \pm 2.0(3)$
transformer oil			27 (1)
xylene		26 (1) ^a	

TABLE 2. "BEST VALUES" OF CUP-BURNER CONCENTRATIONS, VOL.%. (cont.)

^a Nonstandard cup burner.

Fuel	IC-541	IC-55	IG-100
70% isopropanol in water		26(1)	
80% methanol/20% ti-heptane			
acetone	30 ± 0.6 (2)	31 (1)	
acetonitrile	- · · · · · · · · · · · · · · · · · · ·	16(1)	
aviation gas, 100 octane, low lead	30(1)	26(1)	
benzene			
carbon disulfide		49(1)	
cyclohexane		32 (1)	
diesel			
diesel no. 2		26(1)	
diethyl ether	36(1)		
ethanol	33 (1)	30(1)	
ethyl acetate		30(1)	
ethylene glycol		30(1)	
Exxon Turbo Oil		16 (1)	
gasoline (unleaded)		26 (1)	
heptane (commercial)	32(1)	20(1)	
hydraulic oil (Mobil Fluid 350)	52(1)	21 (1)	
hydrogen		21(1)	
isobutanol		29 (1)	
isooctane		29(1)	
	28 (1)	28 (1)	
isopropanol Jet A/JP-5	20(1)	26 (1)	
JP-4		20(1)	
	31 (I)		
kerosene	51 (1)	25(1)	
methane	44 (1)		
methanol	41 (1)	39 (1)	
methyl isnbutyl ketone			
morpholine		22(1)	
ti-butanol		33 (1)	
n-butyl acetate		26 (1)	
n-decane			
<i>n</i> -dodecane	22 + 20/4	25 + 27 (2)	
n-heptane	$33 \pm 3.0 (4)$	35 ± 3.7 (2)	
<i>n</i> -hexane	$3I \pm 0.4$ (2)	29 (1)	
<i>n</i> -octane			
ri-pentane			
ti-propanol			
<i>n</i> -undecane			
natural gas			
nitromethane		32 (1)	
propane		34 (1)	
pyrrolidine		31 (1)	
tetrahydrofuran		32 (1)	
toluene	25 ± 0.5 (2)	26 (1)	
transformer nil	28 (1)		
xylene		24 (1)	

TABLE 2. "BEST VALUES" OF CUP-BURNER CONCENTRATIONS, VOL.%. (concl).

^a Nonstandard cup burner.

TABLE 3.COMPARISON OF CUP-BURNER VALUES FOR OLD AND NEW
PROCEDURE (*n*-HEPTANE).

	Extinguishment Concentration, vol.%		
Agent	Air Flow Fixed Arbitrarily	Plateau Determined	
FC-218	6.1 (1) [24.4]	6.5 (1) [50.1]	
FC-3-1-10	5.3 ± 0.0 (2) [51.4, 51.4]	5.5 (1) [50.1]	

Table 4 presents an overview of the standard deviations observed for the 30 values for which there is more than one source and do not include data deterinined using the plateau method described above. Note that these are percentages of vol.% concentrations (i.e., each is a percent of a percent). The scatter is remarkably small. The average standard deviation for the halocarbon data is only 3%. That for the inert gases is, however, above 5%.

TABLE 4. STANDARD DEVIATIONS AMONG MULTIPLE SOURCES.

	Number	Standard	Deviation as %
		High	Average
Halocarbons	20	9.0	3.0
Inert Gases	10	10.7	5.7

Table 5 summarizes extinguishment concentrations for heptanc. the fuel most often employed for agent comparisons. Most determinations have been made with n-heptane; however, a few have also been made with commercial heptane. a mixture of isomers. The limited data fail to show a significant difference between the two fuels. Table 5 indicates that the heptane extinguishment concentration for Halon [30] is higher than the value of 3.0vol.% usually given for this agent/ fuel combination.

Agent	<i>n</i> -Heptane	Commercial
Halon 1301	3.4 ± 0.0 (2)	3.2 (1)
FC-21X	$6.1 (1)^{a}; [6.5 (1)]$	
FC-3-I-IO	5.3 ± 0.0 (2); [5.5 (1)]	
PIC-1311	$3.2(1)^{a}$	
HCFC Blend A	9.9 ± 0.0 (2)a	
HCFC-I24	$6.7 \pm 0.3 (3)^{a}$	
HFC-125	$8.9 \pm 0.3 (2)^{a}$	
HFC-227ea	6.6± 0.0 (4)	6.7 (1)
HFC-23	13.0 ± 0.2 (3)	12.6 ± 05 (2)
HFC-236fa	$6.3 \pm 0.4 (3)^{a}$	
IG-01	42 ± 1.4 (3)	
IG-100	33 ± 1.6 (3)	
IG-541	33±3.0 (4)	32 (1)
IG-55	<u>35 ± 1.7 (2)</u>	

TABLE 5. HEPTANE CUP-BURNER EXTINGUISHMENT CONCENTRATIONS.

^a Nonstandard CUD burner.

CONCLUSIONS

The analysis of the data collected shows very good agreement between various sources, though the number of comparisons that can be made is small. The values for Halon 1301 with heptane fuel appear to be slightly larger (around 3.2 to 3.4 vol.%) than the value of 3.0 usually assigned to this agent/fuel combination. There is some very weak indication that the use of the plateau method may give slightly large extinguishment concentrations, and a decision may have to be made eventually on whether to combine these data with others. The Task Group is expecting additional data submissions. To date, no data submitted have met the proposed ISO or NFPA standard requirements for both apparatus and method.

A database allowing storage, statistical analysis, summarization, and printout of the data collected has been developed and is available for distribution.

DISCLAIMER

Members of the NFPA 2001 Cup Burner Data Task Group are William Grosshandler, National Institute of Standards and Technology; Howard *S*. Hammel, DuPont Chemicals; Steve W. Hansen, Ansul Fire Protection; Lorne MacGregor, North American Fire Guardian Technology, Inc.; Paul E. Rivers, 3M Chemicals: Mark L. Robin, Great Lakes Chemical Corporation; Joseph A. Senecal, Kidde-Fenwal, Inc., Ronald *S*. Sheinson, Naval Research Laboratory, and Robert E. Tapscott (Chair), University of New Mexico. Although all of the members cited contributed to the assessment of data reported in this paper, this paper was prepared by R. E. Tapscott and does not necessarily reflect the views or conclusions of the Task Group or of any individual member.

This paper does not present official positions of the National Fire Protection Association and does not reflect NFPA policy. The NFPA is not responsible for the content of this paper.

REFERENCES

- 1. NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems 1996 Edition, National Fire Protection Association, 1 Batterymarch Park, Quincy, MA, 1996.
- 2. ISO/14520 Draft International Standard on Gaseous Fire Extinguishing Systems. Part 1 Annex B, International Standards Organization.
- 3. Robin, M. L, and Rowland, T. F., "Development of a Standard Cup-Burner Apparatus: NFPA and ISO Standard Methods," draft for presentation, Halon Options Technical Working Conference, Albuquerque, NM, 27-29 April 1999.