TOXICITY DATA COMPARISON OF CF₃I WITH CURRENTLY USED FIRE-EXTINGUISHING AGENTS AND REFRIGERANTS OF INTEREST TO THE MILITARY

Darol E. Dodd and Allen Vinegar AFRL/HEST ManTech Environmental Technology, Inc Dayton, OH 45437-0009, USA

INTRODUCTION

In accordance with the US EPA's Significant New Alternatives Policy (SNAP) Program. information is required on both acute (single exposure) and chronic (long-term repeated exposure) toxicity to identify and assess human health hazard. Identification of hazard is one of the first steps to be taken in EPA's risk assessment process and, in many cases, results of hazard identification studies are the only data available to develop exposure guideline levels. To identify potential areas of toxicological concern, specialized tests are carried out in laboratory animals, primarily the rodent. Data obtained from mammalian toxicity tests form the basis for identifying and assessing human health hazard. It **is** common to compare the toxicity data profile of **a** newly selected chemical substitute to the toxicity data profiles of currently used agents that the substitute is intended to replace. This type of comparison provides a point of reference for understanding the potential health hazard of a newly selected chemical substitute and oftentimes helps to resolve the ambiguity associated with some toxicity findings.

Trifluoroiodomethane (CF₃I) is currently approved by the US EPA as *a* firefighting agent in normally unoccupied areas under SNAP. The use of CF₃I in *a* number of military and nonmilitary applications is being evaluated, but issues surrounding the toxicity of CF₃I remain subject to clarification. The purpose of this paper is to compare the toxicity data profile of trifluoroiodomethane (CF₃I) to the toxicity data profiles of currently used (or previously used) fire extinguishing agents and refrigerants of interest to the military. Chemicals selected for toxicity data comparisons were Halons 12I I, 1301, 101 I, 1202, and 2402. and refrigerants CFC-11 and CFC-12. Except for Halon 2402, the chemicals selected for comparison with CF₃I are halogenated methanes (Table I).

METHODS

Toxicity data were reviewed from summary documents prepared for each chemical or for **a** group of similar chemicals (see Selected Readings). On occasion, individual journal articles or technical reports cited in the summary documents were reviewed to clarify toxicity data.

RESULTS

Acute Toxicity

Rat LC₅₀ data for two exposure durations (15 min and 4 hr) were obtained (Table 2). Halon 1301 and CFC-I2 produced no mortality at exposure concentrations greater than 80% (v/v). Halon 1211 and CF₃I had 15-min LC₅₀ values in the 20-30% range. CFC-I1, Halon 1202, and Halon

Common	Chemical Name	Structure	Molecular	CAS No.	Boiling	Density/
Name			Weight		Point (°C)	Specific
						Gravity
Halon 1211	Bromochlorodifluoromethane	CBrClF ₂	165.4	353-59-3	-3	1.83
Halon 1301	Bromotritluoromethane	CBrF ₃	148.9	75-63-8	-58	1.54
Halon 1011	Bromochloromethane	CH_2BrCl	129.4	74-97-5	67	1.93
Halon 1202	Dibromodifluoromethane	CBr_2F_2	209.8	75-61-6	24	2.29
Halon 2402	1,2-Dibromo-I, I,2,2-	$CBrF_2CBrF_2$	259.8	124-73-2	47	2.16
	tetrafluoroethane					
CFC-II	Trichlorofluoromethane	CCl ₃ F	137.4	75-69-4	-24	1.49
CFC-12	Dichlorodifluoromethane	CCl_2F_2	120.9	75-71-8	-2x	1.29
CF ₃ I	Trifluoroiodomethane	CF ₃ I	195.9	2314-97-8	-22	2.10

TABLE 1. CHEMICAL NAME, STRUCTURE, CAS NO., AND SELECT
PHYSICAL PROPERTIES.

TABLE 2. ACUTE TOXICITY-LC₅₀ DATA (RAT).

Common	15 min LC ₅₀	4 hr LC ₅₀	Comments
Name	(ppm)	(ppm)	
Halon 1211	200,000	31-131,000	
Halon 1301	>800,000	>800,000	
Halon 1011	-22-32,000	-10,000 (concentration x time extrapolation)	5000 ppm x 7 hr = no deaths
Halon 1202	110,000	–30,000 ppm	4 hr exposure results:
			20,000 = 0% deaths;
			40,000 = 100% deaths
Halon 2402	120,000	55,000	
CFC-I1	130-150,000	26,200	
CFC-12	>800,000	>800,000	
CF ₃ I	270,000	-160,000	4 hr exposure results:
			128,000 = 0% deaths;
			200,000 = 100% deaths

2402 had 15-min LC_{50} values in the 11-15% range, and Halon 1011 has a 15-min LC_{50} value below 10%. The pattern of potency was similar for the 4-hr LC_{50} data.

Cardiac Sensitization

Table 3 lists cardiac sensitization No Observable Adverse Effect Levels (NOAEL) and Lowest Observable Adverse Effect Levels (LOAEL) for the chemicals investigated in this literature search. NOAELs/LOAELs were listed if the chemical had been tested in the standard 5 min exposure study using epinephrine-challenged dogs, similar to the experimental design of Reinhardt et al. [1]. Further, the lowest concentration causing a positive response in a single dog was the criteria for listing a LOAEL. LOAELs were used for chemical comparison of cardiac sensitization toxicity. Halon 1301 and CFC-12 have LOAELs in the 5.0-7.5% range. Although Halons 1211 and 1011 have LOAELs in the 0.7-1.0% range, the value for Halon 1011 is not directly

Common	NOAEL	LOAEL	Comments
Name	(5min-ppm)	(5 min-ppm)	
Halon 1211	5000	10,000	$EC_{50} = 19,000 \text{ ppm}$
Halon 1301	50,000	75,000	$EC_{50} = 200,000 \text{ ppm}$
Halon 1011	Not available	7000	Dogs were anesthetized with a-chloralose.
Halon 1202	Not availablc	Not available	$EC_{50} = 8000 \text{ ppm}$
Halon 2402	Not available	1000	$EC_{50} = 2500 \text{ ppm}$
CFC-11	3200	3500	$EC_{50} = 9000 \text{ ppm}$
CFC-I2	40,000	50,000	$EC_{50} = 77,000 \text{ pprn}$
CF ₃ l	2000	4000	

TABLE 3. CARDIAC SENSITIZATION NOAELS AND LOAELS (CANINE)

 EC_{50} = Calculated concentration that represents an effect in 50% of animals in the study group.

comparable, because dogs were anesthetized in this study. Anesthesia appears to raise the cardiac sensitization threshold. since the effect levels for Halons 1301 and 1211 are 8.0% and 1.4%, respectively, in anesthetized dogs. Chemicals with LOAELs in the 0.1-0.4% range were Halon 2402, CFC-I1, and CF₃I. Since the EC₅₀ for Halon 1202 is 0.8% (unable to obtain individual animal data), the LOAEL would likely **fall** in the same range as Halon 2402, CFC-11, and CF₃I.

Genotoxicity

Halon 1211, Halon 1011, and CF₃I were positive (mutation observed in at least one strain) in the Ames bacterial test system (Table 4). CFC-11, CFC-12, and Halons 1301 and 2402 were negative. Four of the eight chemicals were tested for mutagenicity in an in vitro mammalian cell assay. They were Halon 1211, CFC-11, CFC-12, and CF₃I. All were negative. Halon 1211 and CF₃I were tested in the in vivo mouse micronucleus test. At 5%, Halon 1211 did not produce micronuclei, but CF₃I did. At 2.5%, CF₃I was negative in the mouse micronuclei assay.

Common Name	In Vitro Bacteria (Ames)	In Vitro Mammalian cells	In Vivo Micronucleus (mouse)
Halon 1211	Positive (1/5 strains)	Negative	50.000 ppm NOAEL
Halon 1301	Negative	Not available	(6hr/day x I day) Not available
Halon 1011	Positive (weak - TA1535 strain)	Not available	Not available
Halon 1202	Not available	Not available	Not available
Halon 2402	Negative	Not available	Not available
CFC-11	Negative	Negative	Not available
CFC-12	Negative	Negative	Not available
CF ₃ I	Positive (4/5 strains)	Negative	15.000 ppm NOAEL
		C	50.000 pprn LOAEL
			(6 hr/day x 3 days)

TABLE 4. GENOTOXICITY DATA.

Short-Term Repeated Exposure Toxicity

Short-term (approximately two to three weeks in duration) general toxicity studies have been carried out in rats on seven of the eight chemicals (Table 5). Halon 1301 and CFC-I2 had NOAELs in the 10-50% range. CFC-I1 and CF₃I had NOAELs in the 2.5-3% range (LOAELs were 5-6%). Halons 1211 and 2402 had NOAELs of 0.33-1.25% and LOAELs of I-2.5%. However, the daily exposure for these halon studies was 3.5-6 hr/day compared to 2 hr/day for the CFC-I1 and CF₃I studies. A shorter daily exposure regimen in these studies may have produced slightly higher NOAELs and LOAELs. Halon 1202 produced mortality at a concentration of approximately 2.2%

Common Name	Exposure Duration	NOAEL or LOAEL
Halon 1211	6 hr/day x 15 days	10,000ppm LOAEL
		3300 ppm NOAEL
Halon 1301	2 hr/day x 15 days	500,000 ppm NOAEL
Halon 1011	Not available	Not available
Halon 1202	6 hr/day x few days	-22,000 ppm = > 50% mortality
Halon 2402	3.5 hr/day x 20 days	25,000 ppm LOAEL
		12,500 ppm NOAEL
CFC-11	I hr (x2)/day x 15 days	50.000 ppm LOAEL
		25,000 ppm NOAEL
CFC-12	3.5 hr/day x 20 days	100,000ppm NOAEL
CF3I	2 hr/day x 14 days	60,000 ppm LOAEL
		30,000 ppm NOAEL

TABLE 5. SHORT-TERM REPEATED EXPOSURE TOXICITY DATA (RAT).

90-Day Repeated Exposure Toxicity

Table 6 lists the NOAEL/LOAEL and target organ of concern for those chemicals that were evaluated for general toxicity following a 90-day (13-week) exposure regimen. NOAELs of 1-2.3% were observed for Halon 1301 and CFC-12. CFC-I1 had a NOAEL of 0.1%. NOAELs of 90 days were not established for Halons 1011 and Halon 1202, but in exposure studies of several months' duration, the NOAEL for Halon 1202 was 350 ppm, and the LOAEL for Halon 1011 was 500 ppm (Table 6). For CF₃I, the LOAEL in a 90-day study was 2%. Repeated exposure toxicity data were not available for Halons 1211 and 2402. The target organs of concern for toxicity for most chemicals were the central nervous system (anesthesia or depression), the respiratory tract, and/or the liver. The target organ of concern for the iodine-containing chemical (CF₃I) was the thyroid gland. Life-time exposure studies in rats have been conducted with CFC-11 by the oral route and with CFC-12 by the inhalation route. Neither chemical was tumorigenic.

Developmental and Reproductive Toxicity

Developmental toxicity studies have been carried out in rats on four of the eight chemicals: reproductive toxicity studies were performed on three of the eight chemicals (Table 7). The developmental toxicity study with CFC-11 and CFC-12 used a 10:90 (CFC-11:CFC-12) mixture

Common	NOAEL or LOAEL	Target Organ of	Comments
Name		Concern for Toxicity	
Halon 1211	Not available		
Halon 1301	23,000 ppm NOAEL	Respiratory tract	IS-week study
Halon 1011	1000 ppm: no deaths	Respiratory tract; liver:	500 ppm x several mo. =
		CNS (anesthesia)	LOAEL
Halon 1202	Not available	Respiratory tract: liver;	350 pprn x 7 mo.= NOAEL
		CNS (anesthesia)	
Halon 2402	Not available		
CFC-I l	1000 ppm	Cardiotoxicity;	18-mo. oral study was nega-
	(24 hr/day) NOAEL	CNS (depression)	tive, but NCI considered
			study was inadequate
CFC-I2	10,000 ppni NOAEL	CNS (depression)	5000 ppm NOAEL in
			chronic bioassay
CF ₃ I	20,000 ppm LOAEL	Thyroid gland	
$\overline{CNS} = ce$	ntral nervous system		

TABLE 6. 90-DAY REPEATED EXPOSURE TOXICITY DATA (RAT),

CNS =central nervous system

TABLE 7. DEVELOPMENTAL OR REPRODUCTIVE TOXICITY DATA (RAT).

Common	NOAEL or LOAEL	NOAEL or LOAEL
Name	(Developmental)	(Reproductive)
Halon I211	50,000 ppm NOAEL	25.000 ppm NOAEL
Halon I301	49,505 ppm NOAEL	Not available
Halon IOI	Not available	Not available
Halon I202	Not available	Not available
Halon 2402	Not available	Not available
CFC-I I	200.000 ppm NOAEL CFC-I I/	Not available for CFC-11
CFC-12	CFC-I2 (10:90) mixture	Negative via oral route for CFC-I2
CF ₃ I	Not available	2000 ppm NOAEL

of the two chemicals at an animal exposure concentration of 20%. The developmental toxicity NOAEL for the CFC-11/CFC-12 mixture was 20%. Halon 1211 and Halon 1301 had NOAELs in the range of 5%. In an orally administered study, CFC-12 was not *a* reproductive toxicant. The NOAELs for reproductive toxicity were 2.5% and 0.2% for Halon 1211 and CF₃I, respectively. These were the highest concentrations tested in the reproductive studies.

Acute Exposure — Human Studies

Controlled exposure clinical studies have been conducted with five of the eight chemicals (Table 8). In general. pharmacologic responses are elicited for brief exposure periods at high concentrations. These responses include dizziness, vertigo, variations in heart rate or blood pressure, and alterations in psychomotor test scores. For exposure periods of 30-60 min in duration, a concentration of 1000 ppm was a NOAEL for all chemicals tested. The 1000 ppm NOAEL can he extended to several hours of exposure for CFCs 11 and 12.

Common	Effects Observed	No Effects Observed	Additional
Name			Observations
Halon 1211	Brief (<60 sec) exposures	Pharmacologic responses	
	at 40-50,000 ppm caused	(blood pressure: ventricular	
	vertigo and paresthesia	premature beats) only at	
		1000ppm (several minutes)	
Halon 1301	Brief (3 min) exposures	Brief (3 min) exposures at	
	at 40,000 ppm causes	≤30,000 ppm or 1 000 ppm	
	dizziness and drowsiness	x 30 min produced no	
		responses	
Halon 1011	Not available	Not available	
Halon 1202	Not available	Not available	
Halon 2402	500 ppm x 1 hr causes	1000 ppm x 30 min or	
	alterations in EEG-VER	250 ppm x 4 hr produced	
	test: 1000 ppm x 1 hr	no reproducible effects	
	produced dizziness		
CFC-11	Brief (15-60 sec)	1000ppm x 8 hr	1000ppm x 8 hr/day
	exposures at 1700ppm	produced no responses	x 18 days produced
	causes variations in		no responses
	heart rate		Ĩ
CFC-12	10,000ppm x 2.5 hr	1000ppm x 8 hr	
	produced reduction in	produced no responses	
	psychomotor test scores	• •	
CFal	Not available	Not available	

TABLE 8. ACUTE EXPOSURE STUDIES — HUMAN.

Occupational Exposure Standards

Tables 9 and 10 lists short-term exposure limits (STEL) and 8 hr time-weighted average (TWA) threshold limit values (TLV), respectively, for chemicals that have occupational exposure standards set by professional committees, institutes, or government agencies. In general, standards recommended by American Conference of Governmental Industrial Hygienists (ACGIH) are conservative (i.e., lowest values), but are the same or similar in value to those recommended by other countries or US government agencies. Note that most ACGIH STELs have been expired due to lack of pertinent data, and because other committees or agencies are considering the establishment of acute or short-term exposure guideline levels for select hazardous substances. Halon 1301, CFC-11, and CFC-12 have Short-Term Exposure Limits (STEL) in the range of 1000 to 1250 ppm. Halons 1011 and 1202 are about an order of magnitude lower. The 8 hr TWA TLV for Halon 1301, CFC-I1, and CFC-12 is 1000 ppm. Halon 1011, Halon 1202, and CF₃I have (or are recommended) 8-hr TWA values around 100 to 200 ppm.

DISCUSSION

The purpose of this paper is to compare the toxicity data profile of CF_3I to the toxicity data profiles of currently used (or previously used) fire extinguishing agents and refrigerants of

Common	ACGIH	Other Countries	
Name	(ppm)	(ppm)	
Halon 121	Not available		
Halon 1301	1200 (1976-85)	1200 (United Kingdom)	
		2000 (Federal Repulic of Germany)	
Halon 1011	250 (1976-89)	250 (United Kingdom)	
		400 (Federal Repulic of Germany)	
Halon I202	150 (1976-85)	150 (United Kingdom)	
		200 (Federal Repulic of Germany)	
Halon 2402	Not available		
CFC-I	1000	750 (Sweden)	
		1250 (United Kingdom)	
		2000 (Federal Repulic of Germany)	
CFC-I2	1250(1976-85)	750 (Sweden)	
		1250 (United Kingdom)	
		2000 (Federal Repulic of Germany)	
CF ₃ I	Not available	2000 (Environmental Protection Agency [USA] recommended)	

TABLE 9. OCCUPATIONAL EXPOSURE STANDARDS (STELS/CEILING VALUES).

interest to the military. The toxicity data profiles for chemicals discussed in this paper were divided subjectively into two or three relative toxicity categories for each biological endpoint evaluated (Table 11). This effort allows one to compare the toxicity profiles of the eight chemicals among each other. In conclusion, the toxicity data profile of CF₃I fits within the range of toxicity data profiles of currently used fire extinguishants and refrigerants.

TABLE 10.	OCCUPATIONAL	EXPOSURE STAN	DARDS (8 HR TWA).
-----------	--------------	---------------	-------------------

Common	ACGIH	Other Institutes (Permissible/Recommended/
Name	Threshold Limit Value	Acceptable Exposure Limits)
		(ppm)
Halon 1211	Not available	
Halon 1301	I000	1000 (US Department of Labor, Occupational
		Safety and Health Administration [OSHA])
		I000 (US National Institute for Occupational Safety
		and Health [NIOSH])
Halon 1011	200	200 (OSHA)
		200 (NIOSH)
Halon 1202	IOO	100 (OSHA)
		IOO (NIOSH)
Halon 2402	Not available	
CFC-I I	1000 (1950-81 j	1000 (OSHA)
		1000 (NJOSH)
CFC- 12	IOOO	1000 (OSHA)
		1000 (NIOSH)
CF ₃ I	Not available	150 (US EPA recommended)

Biological	Relatively Low	Relatively Intermediate	Relatively High
Endpoint	Toxicity	Toxicity	Toxicity
Acute Toxicity (LC ₅₀)	Halon 1301, CFC-I2	Halon 1211, CF ₃ I, CFC-II,	Halon 1011
-		Halon 1202, Halon 2402	
Cardiac Sensitization	Halon 1301, CFC-I2	Halon 1211	Halon 2402,
(LOAEL)			$CFC-I1, CF_3I$
Genotoxicity	Halon 1301, Halon 1211,	CF ₃ I	а.,
	Halon 1011, Halon 2402,		
	CFC-11, CFC-12		
Short-term Repeated	Halon 1301, CFC-12	CFC-II, CF_3I , Halon 1211,	Halon 1202
Exposure Toxicity		Halon 2402	
90-Day Repeated	Halon 1301, CFC-12	Halon 1202, CFC-I1, CF_3I	Halon 1011
Exposure Toxicity			
Developmental and	Halon 1211, Halon I30 1,	CF ₃ I	
Reproductive Toxicity	CFC-I1/CFC-12 mixture		
Acute Effects — Human	CFC-II, CFC-12	Halon 1211, Halon 1301,	
		Halon 2402	
Occupational STEL	Halon 1301, CFC-I I,	Halon 1011. Halon 1202	
	CFC-12, CF ₃ I		
Occupational	Halon 1301, CFC-I I,	Halon 1011, Halon 1202,	
8 Hr TLV	CFC-12	CF ₃ I	

TABLE 11. COMPARISON OF TOXICITY PROFILES.

REFERENCE

1. Reinhardt, C. F., Azar, A. Maxfield, M. E., Smith, P. E., Jr., and Mullin, L. S., "Cardiac Arrhythmias and Aerosol 'sniffing'," *Archives of Environmental Health* 22:265, 1971.

SELECTED READINGS

CF₃I

Dodd et al., *Fundam. Appl. Toxicol.* 35: 64-77, 1997 Dodd et al. *Inhal. Toxicol.* 9: 111-131, 1997 Dodd and Vinegar, *Drug Chem.* **Toxicol.** 21: 137-149, 1998 Dodd et al. *Inhal.* **Toxicol.** 11: in press, 1999

Ledbetter, A.D., Unpublished observations. ManTech Environment; ¹ Technology, Inc., Finsl Reports (2), Project No. 6030-012, 1993, and Project No. 1530-001, 1994

CFC-11

ACGIH Documentation of TLV-TWA, Revised 1992
DuPont Haskell Laboratory Review, Unpublished, Updated October 24, 1988, 36 pages
EPA Environmental Hazard Assessment of One and Two Carbon Fluorocarbons, Final Report, EPA-560/2-75-003, 1975

CFC-12

ACGIH Documentation of TLV-TWA, Revised 1991

24() Halon Options Technical Working Conference 21-29 April 1999

DuPont Haskell Laboratory Review, Unpublished, Updated February 19, 1992. 32 pages EPA Environmental Hazard Assessment of One and Two Carbon Fluorocarbons. Final Report, EPA-560/2-75-003, 1975

Halon 1011

ACGIH Documentation of TLV-TWA, Revised 1991

Engibous and Torkelson. Wripht Air Development Division Technical Report 59-463, 1960 Van Stee, E.W., Aerospace Medical Research Laboratory Technical Report. AMRL-TR-74-143, 1974

Halon 1202

ACGIH Documentation of TLV-TWA, Revised 1991
DuPont Haskell Laboratory Review, Unpublished, Updated September 5, 1978, 6 pages
Enpibous and Torkelson, Wright Air Development Division Technical Report 59-463, 1960
EPA Environmental Hazard Assessment of One and Two Carbon Fluorocarbons, Final Repon. EPA-56012-75-003. 1975

Halon 1211

DuPont Haskell Laboratory Review, Unpublished, Updated May 30, 1993, 25 pages EPA Environmental Hazard Assessment of One and Two Carbon Fluorocarbons. Final Report,

EPA-560/2-75-003, 1975

Van Stee. E.W., Aerospace Medical Research Laboratory Technical Report. AMRL-TR-74-143, 1974

Halon 1301

ACGIH Documentation of TLV-TWA, Revised 1992
 DuPont Haskell Laboratory Review, Unpublished, Updated May 25, 1990, 30 pages
 EPA Environmental Hazard Assessment of One and Two Carbon Fluorocarbons, Final Report, EPA-560/2-75-003, 1975

Van Stee. E.W., Aerospace Medical Research Laboratory Technical Report, AMRL-TR-74-143, 1974

Halon 2402

International Organization for Standardization. Document Relevant to the Toxicity of Halon 2402 (Submitted by Italy), Document ISO/TC 21/SC 6/WG 3 – Halons and Carbon Dioxide, Nov.. 1980

DuPont Haskell Laboratory Review, Unpublished, Updated July 9, 1985, 11 pages.