National Aeronautics and Space Administration

John F. Kennedy Space Center

NASA

SPACEPORT ENGINEERING AND TECHNOLOGY

<u>New Environmentally Friendly Halon</u> <u>Alternative</u>

Presented by Clyde Parrish, PhD, Senior Chemist Kennedy Space Center May 24, 2005

- Extinguishing Concept
- Methods Used to Prepare Agent, HABx
- Products
- Testing
 - DSC/TGA
 - Density
 - Water Retention
- Performance Data
- Project Status
 - Production of 100 to 200 lbs
 - Testing
 - Current Research
- Future Development

- Effects of Water
 - Energy Extraction
 - Oxygen Displacement
- Halons
 - Inhibition of Combustion Process
 - Oxygen Displacement
- Environmental Effects
 - Global Warming
 - Ozone Depletion
- Toxicity
 - Materials Used
 - Testing

- Water Phase 1 Encapsulated Water Solution
- Organic Phase Fire Retardant Polymer in Organic Solvent
- Water Phase 2 Gelling Agent in Water

SPACEPORT ENGINEERING AND TECHNOLOGY

Homogenizers

SPACEPORT ENGINEERING AND TECHNOLOGY

Selective Polymer Solubility

SPACEPORT ENGINEERING AND TECHNOLOGY

Interfacial Polymerization

National Aeronautics and Space Administration

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

Interfacial Polymerization Drop Method

- Density
 - Filled capsules density greater than water
 - Capsules with voids float
- Size Distribution
 - Microscope measurement
 - Sieving
- DSC/TGA Data

SPACEPORT ENGINEERING AND TECHNOLOGY

Collection of HABx Microspheres

NASA

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

Sample: Polybromostyrene, 4/14/03

SPACEPORT ENGINEERING AND TECHNOLOGY

Water Retention

Microcapsules were stored in open container in laboratory at ambient temperatures 70 to 74°F and 45 to 55 percent relative humidity

SPACEPORT ENGINEERING AND TECHNOLOGY

Performance Testing

- Apparatus
- Preliminary Test Results
- Final Test Results
- Conclusions
 - Particle Size Distribution
 - Flame Residence Time
 - Unreacted Material
- Recommendations
 - Large-scale Testing
 - Combustion Product Analysis
 - Toxicity Testing

SPACEPORT ENGINEERING AND TECHNOLOGY

SEM Images^{*} of HABx

Particle sizes ranged from 1-2 μ to 38 μ with average size 20 to 30 μ . The wall thickness for the larger particles appears to be approximately 0.5 μ and much smaller for small particles.

*Images supplied by Dr. Harsha K. Chelliah, Dept. of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA

SPACEPORT ENGINEERING AND TECHNOLOGY

Counterflow Burner with Fluidizer

- Counterflow burner
 - Pyrex co-annular nozzles with nitrogen co-flow on both fuel (methane) air sides.
 - Produces stable flat flame
 - Hot combustion gases evacuated with mass flow ejector.
- Particle Seeder
 - Typical particle mass fraction is 1% or approximately 0.1 gm/min
 - Steady feed rates from <10 to 100 µ
 - Best performance with <30 µ particles

Harsha Chelliah, Dept. Mechanical and Aerospace Engineering, University of Virginia, Final Report, NIST Grant No.: 117680

ENGINEERING AND TECHNOLOGY

SPACEPORT

John F. Kennedy Space Center

Performance Data

Data from Initial testing and final report (Harsha Chelliah, Dept. Mechanical and Aerospace Engineering, University of Virginia, Final Report, NIST Grant No.: 117680)

SPACEPORT ENGINEERING AND TECHNOLOGY

Observations and Conclusions

- Observations
 - $\bullet\,$ Best performance with particles less than 30 μ
 - Mass flow determined by weight of trapped particles on filter
 - Orange streaks indicate only small fraction of particles decomposed
- Conclusion
 - Rate of decomposition too slow
 - Heating rate too slow and does not approach decomposition temperature. This is likely for particles greater than 20 to 25 μ
 - Calculated mass of a 35 µ particle is 5.34 times that of a 20 µ particle, which suggests that the measured mass percentage may be high if larger particles did not react in flame

- Production of 100 to 200 lbs of HABx for Large-scale testing
- Development of new production technologies
- Testing Program
 - Performance Testing
 - Toxicity Testing
- Development of Manufacturing Capabilities