A Modeling Study of Flame Quenching by CF₃Br using Detailed Chemical Kinetic Mechanisms C.R. Casias and J.T. McKinnon Department of Chemical Engineering and Petroleum Refining Colorado School of Mines, Golden, CO 80401

This paper presents the methodology and results of research undertaken to identify how halogens interact with flames and to isolate the chemical kinetics and physical phenomena associated with flame quenching mechanisms. The **specific** interest in the **study** of Halon 1301 is to further understand how CF_3Br functions as an effective flame suppressant so that this information can be used to identify alternative suppression agents. For the first time, both the ways in which CF_3Br molecules directly participate in flame inhibition and the contributions of the Br and CF_3 fragments have been identified. The predominant mechanisms including: (1) trapping of H atoms diffusing in the direction opposite to the flow of convection, (2) consumption of the free-radicals, H and HO₂, and (3) reduced rate of heat release as a result of endothermic reaction, are ranked and described.

INTRODUCTION

The work associated with **this** paper **expands** on the earlier evaluations of flame inhibition mechanisms (Casias and McKinnon, **1996)** and **focuses** on halons and fluorocarbons. Of particular interest is a better or improved understanding of the fundamental mechanisms by which CF_3Br (Halon 1301) functions as an effective flame suppressant. **This** information will be invaluable in identifying alternative flame suppression agents.

Experimental observations and model predictions (Walravens et al, 1995; Sheinson et al, 1989; Linteris and **Truett**, 1996) demonstrate the effectiveness of CF₃Br as a flame inhibitor, even under low concentrations such as a 1% (mole basis) addition used in this study. However, the specific pathways by which inhibition occurs are not yet fully understood.

In **this** paper, the pathways are analyzed by evaluation of specific elementary chemical kinetic reactions hypothesized as **having** predominant roles in flame inhibition. These reactions are part of a set of elementary reactions in which predicted flame **speeds** were compared to experimental **data** and determined to be in excellent agreement **for** the inhibitors CH_2F_2 and CF_4 (Linteris and Truett, **1996).**

Walravens et **al (1995)** performed analyses based **on** a continuous flow stirred reactor in order to evaluate the influence of the addition of brominated compounds on the conversion of methane in helium/methane/oxygen **mixtures.** Walravens et al demostrated that a maximum inhibiting efficiency existed at around **1073** K as a result of the brominated compounds reacting though the cycle,

$$HBr + CH, \rightarrow Br + CH_4 \tag{1}$$

$$Br + CH, \rightarrow CH, Br$$
 (2)

$$CH_{3}Br + H \rightarrow HBr + CH,$$
 (3)

which results in the net termination reaction,

$$CH_3 + H \to CH_4. \tag{4}$$

The termination **step**, reaction **4**, **was** noted for competing directly with the principal chain branching reaction.

$$H + O_2 + OH + O. \tag{5}$$

Reaction 5 was qualified **as** being less important at lower temperatures relative to the degenerate branching reaction,

$$H_2O_2 + M \to 2OH + M \tag{6}$$

which was influenced in the presence of bromine due **to** the production of peroxide though the reaction,

$$HO_2 + HBr \to H_2O_2 + Br \tag{7}$$

In the work presented herein, the termination reaction 4 is not identified as having as significant of a role in flame inhibition. Although, similar interpretations concerning the influence of reaction 5 were made, it will become evident that other reactions

are important (particularly when considering flame structure) within the preheat and reactions zones of a flame.

In other work, Sheinson et al (1989) defined the effectiveness of CF_3Br for suppressing air/hydrocarbon fires as being 20% physical, 25% chemical due to CF_3 , and 55% chemical due to Br. Sheinson et al developed a physical predictive model which allowed for determining the contribution from physical effects and for isolating and calculating of the purely chemical suppression contribution of agents. However, the model did not reveal any direct mechanisms that CF_3Br molecules may play in chemical suppression.

In the work presented herein, in addition to analyzing the roles of CF3 and Br fragments, flame inhibition effects associated directly with CF_3Br molecules are also evaluated. As a presage to the following sections, the role of CF_3Br molecules in trapping H atoms and endothermically decomposing have been evaluated and determined to account significantly to CF_3Br effectiveness in flame suppression.

MODEL

In this study, numerical simulations were conducted using PREMIX (Kee et al. 1990) for a number of different cases in an attempt to identify the mechanism or mechanisms associated with flame inhibition of hydrocarbons in the presence of CF₃Br. Inhibition effects are evaluated based on the addition of an inhibiting agent in the amount of 1% (mole basis) and are compared to an uninhibited case, referred to as the reference case. The reference case assumes an adiabatic flame configuration for a stoichiometric C₂H₄/air mixture burning at atmospheric pressure. The parameter used for comparison of uninhibited to inhibited flames is the adiabatic laminar flame speed, S_L . For the base case, S_L was computed to be equal to 73.2 cm/s. A reduction in the flame speed is an indication that an introduced agent acts as an inhibitor, and the magnitude of change in the flame speed is an indication of the relative effectiveness of the agent

The elementary chemical reactions used is this study was compiled from three sources: Bowman et al (1996), Miller and Melins (1992), and Burgess et al (1996). These elementary reactions were selected based on their applicability to this research in accounting for: general hydrocarbon combustion, singlet and triplet methylene reactions, and fluorocarbon, bromofluorocarbon, and iodofluorocarbon chemistry.

RESULTS

A number of cases were modeled where the specific conditions selected for each **case** were based on the desire to isolate **the** individual inhibition effects that **are** hypothesized to occur from CF_3Br addition. The more significant cases analyzed and results are presented in Table 1. The table lists the specific fuel mixture used in each case, along with a brief description of the criteria and restrictions to the chemical kinetics. Resulting adiabatic laminar flame **speeds** and adiabatic flame temperatures are also presented.

Comparison of Reference Case to CF₃BR Cases

Initially, the reference case was compared to two CF₃BR addition cases: CF₃Br addition in which no restrictions were placed on the chemical kinetics, Case CF₃Br, and CF₃Br addition in which the agent was not allowed to react, and thus, functions merely as an inert gas, Case CF₃Br-NR. Comparison of the reference case to the CF₃Br case allows definition of the conditions without and with inhibition effects from 1% (mole basis) addition of CF₃Br. Inclusion of the CF₃Br-NR case allows isolation *d* any heat capacity effects that may influence the flame. Figure 1 depicts the temperature profiles for the reference and CF_3B_1 cases. The rate of change in temperature as a function of axial distance is shown in Figure 2 for the reference and CF₃Br cases.

Figure 1. Temperature profiles for the reference (dotted line) and CF_3Br (solid line) cases. The pints at which the rate of change in temperature attains its maximum value are defined as the inflection points on the curves.

Fuel Mixture	CASE IDENTIFIER and Comments	S _L ^b	T ^e
		(cm/s)	<u>(K)</u>
C ₂ H ₄ /air	Reference Case - $\Phi = 1.0$	13.2	2386
C ₂ H ₄ /CF ₃ Br/air	CF ₃ BR - No restrictions on chemical kinetics.	53.1	2368
C ₂ H ₄ /CF ₃ Br/air	CF₃BR-HTRAP - CF ₃ Br is allowed to decompose only through the given reaction in order to test the importance of H-atom trapping from back diffusion of H atoms. $H + CF_3Br = CF_3 + HBr$	51.6	2368
C₂H₄/CF₃Br/air	CF₃BR-ENDO - CF ₃ Br is allowed to decompose only through the given reaction in order to test the importance of this endothermic dissociation process. $CF_3Br = CF_3 + Br$	59.5	2391
C ₂ H ₄ /CF ₃ Br/air	CF3BR-NR - CF3Br is not allowed to react	68.0	2391
C ₂ H₄/HBr/air	EIBR - No restrictions on chemical kinetics. The direct addition of HBr allows for the independent evaluation of bromine kinetics since HBr rapidly dissociates in the early stages of flame development.	60.2	2368
C ₂ H₄/CF ₃ H/air	CF_3H - No restrictions on chemical kinetics. The direct addition of CHF_3 allows for the independent evaluation of CF_3 kinetics since the H atom is rapidly abstracted from CHF_3 in the early stages of flame development.	63.5	2389
C₂H₄/CF₄/air	CF ₄ - No restrictions on chemical kinetics.	67.1	2312
C₂H₄/CF₄/air	CF_4 -NR• CF_4 is not allowed to react.	61.6	2359

Table 1
Comparison of Adiabatic Flame Speeds for C_2H_4/Air and $C_2H_4/Inhibitor/Air Mixtures'$.

a: 1% inhibitor (male fraction) added to the base reference case C_2H_4 /air fuel mixture, for which the fuel equivalence ratio, Φ , is qual to 1.0. b S_L is the adiabatic laminar flame velocity. E: T is the adiabatic flame temperature at a distance of 10 cm above the flame origination point.

Figure 2. Rate of change in temperature as a function of axial position for the reference (dotted line) and CF_3Br (solid bold line) cases. The points at which the rate of change in temperature attains its maximum value are defined as the points where dT/dx is a maximum.

For all subsequent comparisons, the axial positions of the flames are adjusted **so** that the points at which the rates of the change in temperature attain their maximum value coincide. In Figure 1, these points are defined as the inflection points In Figure 2, these points are identified **as** the points of maximum change in temperature **as** a function of axial position (dT/dx). In Figure 1, the area from approximately **0.0** to **0.035** cm (the location of the inflection point) is defined at the preheat zone, and the area from approximately **0.035** to **0.075** cm is defined at the reaction zone.

Based on these adjustments to the flame positions, axial concentrations (mole **fractions**) of H_rOH , O, and HO_2 were plotted and compared to each other for the cases: reference, CF₃Br, and CF₃Br-NR. **These** plots of mole fraction versus relative flame position **are** shown in Figure **3**. For clarity, the positions at which HO_2 attains a maximum are also shown by the vertical line that extends from the text **to** the x-axis on the H atom, OH, and O atom concentration plots.

Figure 3. H, OH, O, and HO₂ concentration profiles for the reference (dotted lines), CF_3Br (solid bold lines), and CF_3Br -NR (solid lines) cases. The relative flame position at which the HO₂ concentrations attain a maximum value is also shown on the H, OH, and O diagrams.

In Figure 3, it is apparent that the concentrations of H, OH, O, and HO₂ are reduced when the inhibitor is introduced, This effect can been Seen in going from the reference case, to the CF₃Br-NR case, and then to the CF₃Br case. Minimal inferences as to the reasons for reduction in these concentrations will be made at this time; however, it should be noted that the relative position at which the HO₂ concentrations peak in the flame zone is of specific interest. HO, is considered 'to be an important precursor to flame development within the preheat zone and readily forms because of the lower temperature through the reaction,

$$H + O_2 + A4 = HO_2 + M. \tag{8}$$

Although H atoms are not generated within the preheat zone, this reaction cours as a result of H atoms diffusing from the high-temperature reaction zone, against the convective flow, into the preheat zone (Glassman, 1987).

In comparing the reference case to the CF₃Br-NR case (see Table 1), it *can* be shown that heat capacity effects (although present) are minimal. As expected, the addition of CF₃Br as an inert does not result in the characteristic flame *speed* reduction observed in the fully inhibited *case*, *Case* CF₃Br.

In Figure 4, the principal CF_3Br decomposition reactions and rates for the CF_3Br case are shown. Negative reaction rates on the **diagram** indicate that CF_3Br is being consumed, and positive reaction rates indicate that CF_3Br is being produced. The primary CF_3Br reactions are,

Cr3Di Teactions are,

$$H + CF_3Br = CF_7 + HBr, \qquad (9)$$

and

$$CF, Br = CF, +Br, \tag{10}$$

where reaction 9 is an H-atom consumption reaction and reaction 10 is an endothermic dissociation reaction. As a first cut in isolating CF₃Br inhibition effects, simulations were conducted eliminating all CF₃Br reactions, except for reactions 9 and **10**. Given that the rates of these two reactions are significantly greater than those of other CF₃Br decomposition reactions, the predominant CF₃Br inhibition effects should be exhibited by inclusion of only these **two** reactions. Table 2 compares the resulting flame **speed** of the fully inhibited case, **Case** CF₃Br, to that of the case (identified as Case CF₃Br-R2) in which the only CF₃Br reactions allowed to occur **are** reactions 9 and 10.

Figure 4. Principal CF_3Br reactions and rates. Negative reaction rates indicate that CF_3Br is being consumed. Positive reaction rates indicate that CF_3Br is being produced.

Table 2		
Comparison of Flame Sped and Flame Temperature Between the		
Fully Inhibited Case, Case CF ₃ Br, and the Case in which CF ₃ Br is		
Allowed to React only through the Reactions,		
$H + CF_3Br = CF_4 + HBr$ and $CF_3Br = CF_4 + Br$		

	Adiabatic	Adiabatic
	Flame	Flame
Operative Reaction(s)	Speed, SL	Temperature
-	-	at
	(cm/s)	10 cm
		(K)
CASE CF ₃ Br	53.1	2368
$H + CF_3Br = CF_3 + HBr$		
CF, Br = CF, +Br		
CH. + CF.Br = CH.Br + CF.		
Br + CE - Br + CE Rr		
$D_1 = D_1 = D_1 = D_2$		
$O+CF_3Br = BrO+CF,$		
CASE CF3Br-R2	53.5	2366
$H + CF_3Br = CF_1 + HBr$		
CE.Br = CE. +Br		

CF3Br-HTRAP nnd CF3Br-ENDO Cases

To test which reaction (reaction 9 or 10) may play a greater role in reducing the flame *speed* a series of numerical simulations were conducted in which only these two CF₃Br reactions were included in the reaction mechanism. Inclusion of only the two predominant reactions results in flame inhibition effects for which the flame *speed* and flame temperature are nearly identical to those of the fully inhibited case, Case CF Br. Based on this setup, the following analysis focuses on evaluating effects based only on these two predominant reactions. Secondary effects, which may occur as a result of the products of these reactions (CF₃, Br, and HBr) further reacting, were also isolated. This was accomplished **by** allowing these products to be either reactive or non-reactive. Tables 3 and 4 illustrate the effects on the flame speed and adiabatic flame Table 3 presents the results from temperature. modeling in which only reaction 9 was allowed to occur. Table 4 presents the results from modeling in which only reaction 10 was allowed to occur. In both tables, reaction products with square brackets [] indicate that the product is not allowed to further react once produced.

Table 3 Evaluation of the Reaction, $H + CF_3Br = CF_3 + HBr$, Case CF_3Br -HTRAP.

	Adiabatic	Adiabatic
Subcase, Operative Reaction,	Flame	Flame
and Restrictions	Speed, S _L	Temperature
		at
		10 cm
	(cm/s)	<u>(K)</u>
A $H + CF_3Br = [CF_3] + [HBr]$	58.1	2336
B. $H + CF_3Br = CF_3 + [HBr]$	58.7	2385
C. $H + CF_3Br = [CF_3] + HBr$	50.4	2320
D. $H + CF_{Br} = CF_{T} + HBr$	51.6	2368

a: Square brackets [] around the reaction products indicate that the product is not allowed to further read once produced

For Case CF_3Br -HTRAP, effects to the flame speed are significant under all scenarios evaluated. The importance of the reaction 9 and its role in flame inhibition, particularly within the reaction zone, is best demonstrated by consideration of the information contained in Figure 5.

Subcase, OperativeReaction, and Restrictions [®]	Adiabatic Flame Speed, S _L	Adiabatic Flame Temperature at
	(cm/s)	<u>(K)</u>
A. $CF_3Br = [CF_3] + [Br]$	62.5	2318
B $CF_3Br = CF_1 + [Br]$	61.0	1372
C. $CF_3Br = [CF_3] + Br$	61.4	2327
D. $CF_3Br = CF$, +Br	59.5	2377

a: Squarebrackets [] around the reaction products indicate that the product is not allowed to further react once produced

In Figure 5, the net rates of H-atom production for the reference and CF_3Br cases shown were calculated by summing the rates all H-atom producing and H-atom consuming reactions. The main point of Figure 5 is to illustrate that, within the preheat, the net rate of H-atom production is negative. Therefore, in order for the reactions (i.e., H-atom consumption reactions in the preheat zone) to proceed, H atoms must diffuse opposite to the direction of convective **flow** from the hightemperature reaction zone (where the rate of H-atom production is positive) into the preheat zone. Thus, the term "H-atom trapping" was derived based on this phenomenological process in which it is hypothesized that H atoms are trapped (by reaction with CF_3Br) as they attempt to diffuse into the preheat zone.

For Case CF₃Br-HTRAP, Subcase A in Table 3, when neither of the products (CF₃ or HBr) is allowed to react, once formed, the flame *speed* is reduced from 73.2 cm/s (reference case) to 58.1 cm/s. This case is illustrative of the significance of H-atom trapping since the only other reaction ∞ curing, conpared to the non-inhibited reference case, is reaction 9.

In Case CF₃Br-HTRAP, Subcase B, the flame speed increases slightly to a value of 58.7 cm/s when the reactant CF₃ is allowed to react, as compared to a value of 58.1 cm/s when the reactant CF₃ is not allowed to react. The reason for this increase is that most subsequent reactions involving CF3 are exothermic and thus function slightly as flame promoters rather than flame inhibitors. This is evident by comparison of the adiabatic flame temperature, which also increases when CF₃ is allowed to react. In Case CF₃Br-HTRAP, Subcase C, where CF, is not allowed to react and HBr is allowed to react, it can be seen that the flame speed is reduced even further to a value of 50.4 cm/s. Thus, HBr can be considered to be an effective flame inhibitor. At this point in the discussion, analysis of flame inhibition effects from HBr will be deferred. A more detailed discussion of the role that HBr plays in flame inhibition is presented in the following section, HBr Case. Lastly, in Case CF3Br-HTRAP, Subcase D, again the flame speed increases slightly to a value of 51.6 cm/s when the reactant CF₃ is allowed to react, as compared to a value of 50.4 cm/s when the reactant CF₃ is not allowed to react. Again, because the majority of the subsequent reactions involving CF₃ are exothermic, CF₃ functions slightly as a flame promoter. As before, this is evident by comparison of the adiabatic flame temperature of this subcase to Subcase C, which also increases when CF₃ is allowed to react.

For Case CF₃Br-ENDO, Subcase A, when neither of the products (CF₃ or HBr) is allowed to react, once formed, the flame speed is reduced from 73.2 c d s (reference case) to 62.5 cm/s as shown in Table 4. Although, the flame speed is not reduced to the same degree as it was in the CF₃Br-HTRAP case, this case is illustrative of the significance of endothermic dissociation of CF₃Br through reaction 10.

In Case CF₃Br-ENDO, Subcase B and D, the flame *speeds* decrease slightly to values of 61.0 and **59.5** cm/s when the reactant CF₃ is allowed to react, as compared to values of 62.5 and 61.4 cm/s, respectively, when the reactant CF₃ is not allowed to react. Previously (Case CF₃Br-HTRAP, Subcases B and D), CF₃ was attributed as functioning slightly as a flame promoter, as

evidenced by the slight increase in flame **speed**, due to the fact **that** all subsequent reactions involving CF_3 were exothermic. However, in **this** *case*, CF_3 acts slightly as a flame inhibitor due to the subsequent reaction,

$$H + CF_3 = CF_2 + HF, \qquad (11)$$

becoming relatively important as a H-atom consumption reaction; recall that for this general case, CF₃Br-ENDO, reaction 9 is not allowed to coccur. In Subcases C and D, where **Br** atom was allowed to react (as compared to **Subcases** A and **B**, where **Br** atom was not allowed to react), the flame **speeds** were not **affected** to the same degree **as** they were in the CF3Br-HTRAP case, where similar restrictions were placed on HBr. The roles that **Br** and **HBr play** in flame inhibition require a greater level of analysis and, thus, are discussed separately in the following section.

HBr Case

With the direct addition of HBr in the inlet feed, it was possible to evaluate inhibition effects associated with bromine's chemical kinetics independent of those effects attributed to CF_3Br consumption. In Figure 6, the predominant reactions involving **Br** atom **are** shown. Negative reaction rates (on the figure) indicate that **Br**atom is being consumed, and positive reaction rates indicate that Br-atom is being produced.

As can be seen, the predominant reaction (in terms of the magnitude of the rate) is the reaction,

$$H + HBr = H_1 + Br. \tag{12}$$

Reaction 12 is effective in directly reducing the H atom concentration. Williams (1985) identitied this reaction as being responsible for removing "the very active H atom, replacing it with the less active Br atom, thereby reducing the overall rate of heat release." It is evident that the rate of heat release is reduced when HBr is allowed to react (by comparison of Subcases A and B to Subcases C and D of Case CF₃Br-HTRAP); however, reactions that consume H atom in the preheat zone as well as early in the reaction zone have a greater effect on flame inhibition. Recall that the H atom consumption channel (reaction 9) was more effective in reducing the flame speed than was the endothermic dissociation channel (reaction 10) in the previous section.

The rate of the reaction,

$$Br + HO_{2} = HBr + O_{2}, \tag{13}$$

is considerably lower than the rate of reaction 12; however, reaction 13 is significant. Within the preheat zone and throughout the reaction zone, reaction 13 operates as a free-radical termination reaction and consumes HO_2 . The direct impact that this reaction has on flame inhibition, due to the fact that it operates as a free-radical termination reaction, is obvious and will not be discussed any further; however, the role of this reaction in the consumption of HO_2 is of particular interest.

In Figure 3, it was shown that the production of HO_2 peaks in the preheat zone where the reaction,

$$H + O, +M = HO, +M \tag{14}$$

is favorable due to the lower temperature. The maximum HO_2 concentration is well ahead of the **peak** concentrations of H, OH, and O. HO_2 subsequently forms peroxide, which does not dissociate at the temperatures in the preheat zone and is therefore convected into the reaction zone, where it forms OH radicals (Glassman, 1987). Under nominal conditions, where inhibition is not a factor, this process is effective in flame propagation. However, in the preheat zone is significantly reduced (**as** shown in Figure 3) by reaction with Br atoms through reaction 13. Thus, the amount of HO_2 present for convection into the reaction zone is significantly lowered. Figure 7, which compares the

net rates of HO₂ production for the reference and CF₃Br cases, clearly illustrates the impact of bromine.

In addition to the effect of HO₂ consumption by bromine atom, the rate of production of HO₂ in the preheat zone via reaction **14** is also reduced in the presence of CF₃Br **because** a lower concentration of H atoms **diffuse** into the preheat zone. "his phenomenon, defined **as** H-atom trapping, was previously presented in the section titled CF_3Br -HTRAP and CF_3Br -ENDO Cases.

CF₃H, CF₄, and CF₄-NR cases

The purpose of Case CF₃H, as indicated in Table 1 was to independently evaluate the chemical kinetics associated with CF₃, since the H atoms of the CF₃H molecules are rapidly abstracted in the reaction zone. In fact, much of the independent analysis on CF₃ kinetics has already been accomplished in the section titled CF₃Br-HTRAP and CF₃Br-ENDO Cases. In the CF₃Br-HTRAP case, it was demonstrated that predominant CF₃ reactions are exothermic and act moderately as flame promoters. In the CF₃Br-ENDO Case, it has been shown that CF₃ kinetics also act to inhibit the flame. Overall, inhibition by the consumption of H-atoms is relatively more important than the ability of CF₃ reactions to act as flame promoters through exothermic channels given that the predominant CF₃ reaction consuming H atoms is reaction 11, which also happens to be exothermic.

Case CF_3H is demonstrative of the role that CF_3 plays, primarily as a moderate flame inhibitor rather than as a flame promoter. In this case, the addition of CF₃H effectively increases the fuel equivalence ratio. Generally, an increase in the fuel equivalence ratio, for a fuel-lean flame, will result in an increase to the flame speed; however, in this case the flame speed is reduced from a value of 73.2 cm/s (reference case) to 63.5 cm/s. The **net** effects of the reactions associated with CF₃H oxidation is an exothermic process. as confirmed by the slightly higher adiabatic flame temperature in the postflame zone. The **ret &&** of the reactions associated with CF₃H and CF₃ consumption in the reaction zone are also exothermic processes. Thus, the reduced flame speed observed for the CF₃H case must be attributed to free radical scavenging dominating over any compensating effects (that would act as flame promoters) from exothermic processes.

Case CF₄ and Case CF₄-NR are included to demonstrate the relative ineffectiveness of CF₄ as a flame inhibitor. The flame speed reductions from the reference case value of 73.2 cm/s to 67.7 cm/s (Case CF₄) and 67.8 cm/s (Case CF₄-NR) are due almost entirely to heat capacity effects.

Flame Effects From Methane And Fluoromethanes

In Table 5, the adiabatic flame speeds and flame temperatures are reported for two cases: the reference Case, which is a stoichiometric mixture of C_2H_4 /air, and the C_2H_4 -CH₄ case, in which 1% methane was added to the reference case. For the reference case, the resulting adiabatic flame speed and *flame*temperature are 73.2 cm/s and 2391 K, respectively. In the C_2H_4 -CH₄ case, the flame speed and flame temperature increase to values of 76.9 cm/s and 2396 K, respectively. These increases are due strictly to the change to the fuel equivalence ratio (Φ) when methane is added. The actual fuel equivalence ratio for the C_2H_4 -CH₄ case is equal to 1.15.

Table 5 Comparison of Adiabatic Flame Speed and Flame Temperature for Reference and C₂H₄-CH₄ Cases

Fuel Mixture	Fuel Equivalence Ratio	Adiabatic Flame Speed, S _L	Adiabatic Flame Temperature at 10 cm
	(Φ)	(cm/s)	(K)
C ₂ H ₄ /air	1.0	73.2	2391
C2H4/air/CH4	1.15	16.9	2396

Based on the known behavior of laminar flame speed versus fuel equivalence ratio for fuel/air mixtures, as the fuel equivalence ratio is increased from a value of Φ equal to 1.0 to approximately 1.15 for a C₂H₄/air mixture, the laminar flame speed will also increase from a value of approximately 70 cm/s to 75 cm/s (Glassman, **1987**). Thus, the effect Seen here is strictly due to the fact that the mixture is a slightly fuel-rich **mixture**, and the flame speed is expected to be higher than that for the stoichiometric reference case. As the fuelequivalence ratio is further increased, by the further addition of CH4, the flame speed is now expected to decrease, and indeed it does as shown in Figure 8. An interesting point worth mentioning it that, conceptually, fuel-rich flames can be considered to be inhibited if the reduced flame speed is used as the indicator.

Figure 8. Comparison of normalized flame speed for $C_2H_4/air/agent$ mixtures, where the agent is equal to N_2 (dotted line) and CH_4 (solid line).

Lastly, four C₂H₄/air/inhibitor mixtures were compared. The inhibitor agents evaluated were CH₄ (as previously presented), CH₃F, CH₂F₂, and CHF₃. The normalized flame speed versus mole fraction inhibitor results for C₂H₄/air/inhibitor mixtures are presented in Figure 9. As the concentration of CH₄ is increased above approximately 5% (mole basis), CH₄ becomes a more effective inhibitor than either CH₃F, CH₂F₂, or CHF₃. The reason for this is that as the mole fraction of inhibitor increases, the fuel equivalence ratio also increases (this is true in all cases); thus, the relative amount of oxygen present decreases.

Figure 9. Comparison of normalized flame speed versus mole fraction inhibitor for CH₄, CH₃F, CH₂F₂, and CHF₃-fuel mixtures.

Specifically, for the $C_2H_4/air/CH_4$ fuel mixture, the reduced flame *speed* occurs as a result of an insufficient amounts of oxygen being available to carry out the " n o doxidation process (i.e., formation of CO and H₂O). On the other hand, in the fluoromethane cases, large amounts of other stable products of combustion can be formed (i.e., CF₂O and HF) which are significantly less dependent on oxygen. In effect, fluorine can act as a flame promoter under oxygen-deprived conditions.

In general, the rates at which hydrocarbons decompose are faster than those for the analogous fluorinated hydrocarbons. As a result, a relatively larger fraction of fluoromethane intermediates are convected further out in the flame prior to reacting. The inhibition effects observed from fluoromethanes are functions of the slower chemistry occurring within the reaction zone, with minimal dependency of the latter chemistry occurring in the post-flame zone,

For conditions in which oxygen deprivation is not an issue, **as** in the **case** where **the** inhibitor addition is less than approximately **4%** (mole fraction), CHF₃ is the most effective flame inhibitor of the fluoromethanes. In this case, inhibition effected by H-atom consumption in the reaction zone through reaction 11, dominates over any flame promotion effects that might occur as a result of this reaction's exothermicity **As** the relative amount of CF₃ present decreases and the H-atom concentration increases (i.e., CF₂H₂ addition), the importance of reaction 11 is diminished. The addition of CH₃F further demonstrates the diminishing role of reaction 11, in that a 1% addition results in flame promotion. This effect is what would be expected when the fuel equivalence **ratio** is increased from a value of 1.0 to a higher value and chemical inhibition is not significant.

SUMMARY

Overall, the role of CF_3Br in flame inhibition has been presented. The predominant mechanism *are* presented in Figure 10 in relative order of importance. The results of **this** work provide an explanation of the mechanisms associated with **flame** inhibition by CF_3Br . Additionally, the results of **this** work provide a focal point from which experimental and other numerical studies *can* be based in order to test the general applicability of these mechanisms using other chemical species, particularly those being considered as alternative replacements to Halons.

MECHANISM	DESCRIPTION OF PROCESS
 H-atom trapping by CF3Br in the reaction zone H + CF3Br => CF3 + HBr 	H-atoms produced in the reaction zone and diffusing opposite to the direction of convective flow are trapped.
 Direct H-atom scavenging by HBr in the preheat and reaction zones H + HBr => H2+ Br 	Scavenging of H atoms results in a reduction of all subsequent initiation and propagation reactions.
 HO2 consumption in the preheat zone HO2 + Br ⇒ O2 + HBr	Free-radical chain termination step.
 Endothermic dissociation of CFiBr in the reaction zone 	The net rate of heat release in the reaction zone is reduced.
$CF_3Br => CF_3 + Br$	

Figure 10. Identification of the predominant mechanisms, in relative order of importance, associated with flame inhibition by CF_3Br .

ACKNOWLEDGMENT

We are grateful lo the National Science Foundation National Young Investigator Program for financial support

REFERENCES

Bowman, C.T., R.K. Hanson, D.F. Davidson, WC. Gardiner Jr., V. Lissianski, G.P. Smith, DM. Golden. M. Frenlach, and M. Goldenberg (1996), World Wide Web. http://www.me.berkeley.edu/gri_mech/version21.

Burgess, D.R.F. Jr., M.R. Zachariah, W. Tsang, and P.R. Westmoreland (1996). Thermochemical and Chemical Kinetic Data for Fluorinated Hydrocarbons, World Wide Web, http://fluid.nist.gov/836.03/ckmech/Mechanism.html. Casias, C.R. and J.T. McKinnon (1996), Comb Sei Tech, 116117, 289-315.

Glassman. I. (1987). <u>Combustion</u>, 2ed, London, Academic Press, Inc.

Kee, R.J., J.F. Grcar, M.D. Smooke and Jd. Miller (1990), A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Sandia National Laboratories, Albuquerque. NM, SAND85-8240.

Linteris, G.T. and L. Truett (1996), Combust Flame, 105, 15-27,

Miller, J.A., and C.F. Melius (1992), Combust Flame, 91, 21-39

Sheinson. R.S., J.E., Penner-Hahn, and D. Indritz (1989), Fire Safety Journal, 15, 437-450.

Walravens, B., F. Battin-Leclerc, G.M. Come. and E Baronnet (1995), Combust Flame, 103, 339-342.

Williams, F.A. (1985). <u>Combustion Theory</u>, 2ed, Addison-Wesley Publishing Company Redwood, CA.