HALON REPLACEMENT PROGRAM FOR COMBAT VEHICLES A STATUS REPORT

William Bolt, Craig Herud, Terry Treanor U.S. Army Aberdeen Test Center Steven McCormick U.S. Army Tank-Automotiveand Armament Command

Halon Replacement Program Overview

• Engine Compartment

Phase I - Fixture test to screen candidatesPhase II - Running engine, (proof of principle) and laboratory testsPhase III - Combat vehicle specific

• Crew Compartment

Combat fires

• Hand-held Extinguishers

CO, concentration testing Alternate agent tests

2

1

Status

Engine Compartment

- Phase I Completed
 - 14 agents tested
- Phase II Testing in progress
 - 6 agents tested
- Phase III Vehicle modifications underway Sheridan, M1 and Bradley

9 May 1996

Status

Crew Compartment

- Combat fire scenarios
 - Test fixture constructed
 - Test instrumentation installed
 - Baseline characterization tests underway
- Peacetime fire scenarios
 - Pan fire tests underway
 - Class A/B fire scenario being developed
 - Crew heater testing underway

Status

Handheld Fire Extinguishers

- Efficacy testing underway
- Personnel heater decomposition products testing completed
- Pyrolysis products testing scheduled

9 May 1996

Agents/Systems Tested Phase I

Iodocarbon- C ₃ F ₇ I
Envirogel
Gas Generators
NaHCO ₃ Dry Powder
Water + Additives
CO_2

Pyrotechnic Aerosol (2) Hybrid Gas Generators Water Mist FM200, FE36, FE25 Halon 1301

Agent Weight & Volume Required

Agent	Agent	Agent	%Volume
	Weight	Volume	Increase
Halon 1301	7.0	204	0
Dessikarb	6.6	204	0
FM 200	9.0	288	41
FE 36	9.0	288	41
Hybrid Gas Generator	12.4	320	57
FE 25	9.0	388	90
c02	12.0	516	182
Water Mist	17.0	610	199
			Franken in

9 May 1996

Engine Phase II

M60A3 w/ operating engine

- Provides realistic geometry and airflow
- Initially used standard M60 distribution system
- Type 2 and Type 3 fire scenarios tested
- Mod Oa (two rakes) worked better

8

7

Test Conditions

- All tests vs Type 2 and Type 3 fires
- Results based on best distribution system design to date
- Data compared to Halon 1301 performance
- Limited extinguisher size: 144,204& 288 in³ (std extinguishers)

9 May 1996

Type 2 Fire Scenario

- Type 2 fire bilge & fuel spray, no airflow:
 - TO; start bilge fire
 - T+20; start fuel spray
 - T+25; start engine
 - T+35; stop engine,
 - T+40; discharge agent
 - T+65; stop fuel spray
 - T+180; test complete

Type 3 Fire Scenario

- Type **3** fire bilge fire only w/airflow:
 - TO; start bilge fire
 T+20; start engine (run @1000 RPM)
 T+50; discharge agent
 T+180; test complete

9 May 1996

Agents/Systems Tested

 TACOM sponsored Phase II tests FM200 - (HFC - 227ea)
 FE 36 - (HFC - 236fa)
 Sodium bicarbonate, (6 candidates)
 Hybrid Gas Generators w/FM 200

12

П

Agents/Systems Tested

 Vendor sponsored Phase II tests Envirogel Aqueous salts

13

9 May 1996

Agent Weights & Volumes Required

	Weight		Volume	
Agent	Phase 1	Phase 2	Phase 1	Phase 2
Amerex		9.1		204
Hybrid/FM-200	12.4	9.5	320	240
Halon 1301	7.0	10.0	204	288
Dessikarb	6.6	9.0	204	288
Envirogel		11.5		288
FM-200	9.0	12.0	288	408
FE-36	9.0	12.0	288	408
Hybrid/water	11.5		344	
Ansul Plus 50	>10.0		>204	
9 May 1996				Western Town Constant

Results

- Limited testing of dry powder in next smaller bottle (5 lb/144 in³)
 - determine margin of safety
 - evaluate 6 different NaHCO, powders
 - successes achieved with 5 lb bottle
- Standard bottle is 7 lb/204 in³
 - no practical advantage to reducing volume
 - volume saved can not be utilized

9 May 1996

15

Conclusions

- Performance equivalent to Halon 1301 cannot be achieved without some modifications to hardware (No "drop-in" agent)
- Distribution system design is critical and must consider engine compartment geometry & airflow
 - Importance of distribution system:

Powder > Liquid > Gas

- good design can reduce agent requirement

Conclusions

- Shutting down engine airflow prior to discharge of agent can drastically reduce the amount of agent required; all fires become Type 4
- Adjustment of the Phase I distribution system required to achieve equivalent or better performance in Phase II
 - Type 3 fire more severe than Phase I
 - Type 2 fire less severe than Phase I

9 May 1996

Conclusions

- Dry chemical: No volume penalty over existing Halon 1301 systems, but major distribution system hardware changes are required: (new piping, nozzles)
- Liquid agents: -40% volume penalty over existing Halon systems, but minor hardware changes are required.

Issues To Consider

- Single replacement agent for all vehicle systems highly desirable from logistics standpoint.
- May not result in optimum agent for each system.
- Choice will be driven by Abrams/Bradley requirements.

Lessons Learned

- Engine can be destroyed in less than 3 minutes
- Detection system recommended
- Additional clutter and differences in airflow made the Type **3** scenario more severe
- Extinguisher ullage critical:
 - more required for liquid agents (30-40%)
 - < 5% for dry powders
 - N₂ plays a significant role in agent performance

