F-15 Halon Replacement Trade Study

Glenn DuBrucq (314) 233-1744

1996 Halon Options Technical Working Conference 09 May 1996 Albuquerque, NM

Sponsored by F-15 SPO

MCDONNELL DOUGLAS

Baseline System

- One 6.6 pound Halon 1301 bottle mounted between engines
- System weighs 21 pounds
- Four bays protected (3 fire zones)
 - Right/Left Engine
 - JFS/AMAD bays
- Bottle and system design and qualification based on Mil-E-22285
- DoD Halon bank supporting F-15 fleet

MCDONNELL DOUGL

Performance Requirements

- Two fundamental performance requirements
 - Minimum agent required defined by design equations (volume and ventilation)

 Agent concentration must be 6% for 0.5 secs simultaneously throughout bay

 Concentration tests in engine nacelle verify system performance

The Candidates

- Three candidate replacements down selected for study
 - HFC-125 (Fe-25, C₂HF₅)
 - CF₃I (Triodide, Iodoguard)
 - Gas Generators
- Baseline: Halon 1301 CF₃Br

MCDONNELL DOU

HFC-125

- Selected by DoD, FAA as agent for near term development
- Test effort at Wright Labs is determining amount of agent needed
 - Design equations
 - Concentration vs. time profile
 - DoD meeting in January to review results
- Selected by V-22 for engine nacelle fire protection

MCDONNELL DOUGL

HFC-125 Issues

- Total weight = 41 pounds (at 2.1 x Halon volume)
 Cylindrical bottle needed
- Adequate dispersion at all operating temperatures
 Additional discharge nozzle may be needed
- Maintenance similar to Halon
- Toxicity Approved only for normally unoccupied areas
- Material compatibility acceptable
- · Qualification similar to Halon

MCDONNELL DOUG

- $CF_{3}I$
- Advertised as drop-in replacement
 - Volume competitive with Halon
- Commercial aircraft most interested
- FAA plans on determining required concentration profile in early 1996
 – Fire tests, concentration measurements

MCDONNELL DOU

CF₃I Design Configuration

- Existing data suggests volume equal to Halon
 System weight 26 pounds
- CF₃I probably not drop-in replacement for F-15
 - Additional discharge nozzle in upper forward portion of bay
- Material compatibility, stability acceptable
- Maintenance, qualification similar to Halon

CF₃I Toxicity

- NOAEL an order of magnitude lower than Halon 1301, HFC-125
- Data based on exposure times of about 15 minutes
- Maintenance crew exposure likely to be seconds

- Personnel can evacuate

- CF₃I will concentrate at ground level

- No data on short times, high concentration levels
- MDA experts feel physical injury more likely than chemical injury

- Common to all agents

MCDONNELL DOUQL

CF₃I Dispersion at Cold Temperatures

- Boiling point -8°F at sea level
- Test data shows adequate dispersion with cold bottle in ambient bay
- Dispersion, vaporization in cold bay questionable
- How critical is performance at -20°F on ground?
 - Ground crew often extinguish these fires
 - Extra agent may compensate

MCDONNELL DOUGL

Gas Generators

- Derived from automobile air bag technology
- Selected by F/A-18 E/F for engine nacelle protection
- USAF plans to flight certify KC-135 system
- Extinguishing mechanism not fully understood
 - Inerting vs. blow out

MCDONNELL DOUOLAS

Gas Generator Design Configuration

- Propellant burns for 6 seconds
 - Long burn time prevents relight
- System weight 29 pounds
 - Additional nozzle in forward, upper nacelle
 - Engine cleanup may be required after use
 - Solids expelled
 - 5.5 year service life
 - Same as electrical initiators

MCDONNELL DOUG

Gas Generator Qualification

• F/A-18 €IF

- Building and extinguishing fires to qualify
- Nacelle simulator withstands many fires
- Determined baseline fire location, strength
 - Limit of Halon system
- Will attempt to measure concentration vs. time
- Assuming F-15 will need to build fires

MCDONNELL DOUQL

Summary

Н	alon 13	01HFC-125	CF ₃ I	Gas Ger	۱
			í.		
Weight (lbs)	21	41	26	29	
Dist Sys	- /	(Add discharge	nozzle for all o	options)	
Qualification		Conc test	Conc test	Fire test	
LC Cost (\$x10 ⁻	⁶) 5	17/1	14	40	
Risks		hand for the second			
Minor	Bank	Weight	Toxicity	-	
	viability		Material comp	1	
Moderate			Low temp	Extinguishin	g
			performance	mechanism	1
		N	CDONNELL		Ń
		16	CDUNNELL		

Conclusions/Recommendations

- Gas generators too expensive
 - No strong advantages to overcome cost
- HFC-125 acceptable
 - Best knowledge base
 - Better low temperature performance than CF₃I
- CF₃I has marginal advantages over HFC-125
 - Easiest retrofit, Minimum cost/weight
 - Issues: Low temperature performance, toxicity
- Pending WPAFB test results may change conclusions
- There is no pressing need to change from Halon
 MCDONNELL POUGLAS