TECHNICAL ASSESSMENT FOR THE SNAP PROGRAM

Stephanie R. Skaggs, Robert E. Tapscott, and Ted A. Moore Center For Global Environmental Technologies New Mexico Engineering Research Institute The University Of New Mexico Albuquerque, New Mexico 87131

INTRODUCTION

Section 612 of the US Clean Air Act of 1990 (Reference1) requires the EPA to enact regulations making it unlawful to replace any Class I or Class II substance with any substitute that may impact human health or the environment and to publish lists of both prohibited and acceptable substitutes. The risk assessments required for each substitute will be conducted under the Significant New Applications Policy (SNAP) **Program.** In order for the EPA to make informed decisions about the possible substitutes, the New Mexico Engineering Research Institute was tasked under contract to ICF Incorporated to identify the current halon use areas and to suggest viable, near-term substitutes for the specific Halon 1211, 1301, and 2402 applications. Here, the term "substitutes" includes both replacement agents (halon-like chemicals) **as** well as alternatives (non-halon-like agents such **as** water, foam, and CO₂). This paper describes the effort undertaken to determine all the halon uses to date and to identify proposed substitutes.

HALON APPLICATIONS

A written and telephone survey was performed to identify the known Halon 1211,1301, and 2402 uses to date. The survey resulted in the list of uses presented in Table 1. Halon 1301 and 1211 were indicated to be in wide use in a variety of applications in fixed systems and portable **use**, respectively. Halon 2402 was identified **as** having limited use as a fire extinguishing agent in the United States, except for possible replacement in existing systems (Reference **2**). It has been used extensively in other countries, particularly in Italy, in Eastern European countries, and in the Soviet Republics. The properties of Halon 2402 make it most suitable for a streaming discharge from portable systems or in localized applications. At one time, Caterpillar, Inc., had a Halon 2402 fine extinguishing system in their tractors; trucks; and large-wheel loaders for engine compartments, transmission areas, and related non-occupied area use (Reference 3). However, they no longer make this unit. It has been reported that Boeing Aircraft has used Halon 2402 in some **of** their

	TABLE 1. HALON USE SECTORS				
ъ.	PORTABLE EXTINGUISHERS FOR FIXED FACILITIES				
	1. Residential				
	2. Commercial				
	3. Military and Government				
3.	AEROSPACE APPLICATIONS				
	1. Handheld Extinguishers for On-Board Aircraft				
	2. Ground-Based Aircraft Fire Protection				
	3. Aircraft Cargo Bays				
	4. Dry Bay Explosion Suppression				
	5. Aircraft Engine Nacelle				
	6. SpacecraftFire Protection				
	7. Aircraft Manufacture				
2.	MARINE APPLICATIONS				
	1. Crew Qarters				
	2. Machinery Spaces				
	3. Control Rooms				
	4. Automobile Ferry Boats				
Э.	CIVILIAN GROUND TRANSPORTATION				
	1. Rail Transportation				
	 Vehicle Fixed Systems Vehicle Handhelds 				
-					
3.	TOTAL-FLOOD ELECTRONICS PROTECTION				
	 Data Processing Telecommunications 				
	3. Production Control Rooms				
	4. Nuclear Power Plant Control Rooms				
	5. Medical Facilities				
₹.	CIL PRODUCTION, REFINING, TRANSFER, AND STORAGE				
•	1. North Slope Facilities				
	2. Pipeline Pumping Stations				
	3. Off-Shore Cl Production				
	4. Other Fixed Facilities				
Э.	PROTECTION OF NON-ELECTRONIC FACILITIES				
	1. Flammable Liquid Storage				
	2. Explosion Suppression				
	3. Libraries, Museums, Art Galleries				
	4. Records Storage				
	5. Bank Vaults and Depositories				
	6. Warehouses				
	7. Cooking and Food Processing				
H.	TOTAL-FLOOD PROTECTION OF SPECIAL FACILITIES				
	1. Antarctic Research Facilities				
	2. Toll Booths				
	3. Research Laboratories				
	4. Anechoic Chambers				
•	APPLICATIONS UNIQUE TO THE MILITARY				
	1. Tactical Vehicles				
	2. Aircraft Fuel Cell Inerting				
	3. Missile Vector Control				
	4. High Security Fixed Facilities				
نے ا	TRAINING-ANDESTING				

older 700 series aircraft, possibly the 707,727, and 747; however, personnel now at Boeing have no knowledge of that use (Reference 4). In the past, Frito-Lay, Inc., used a Halon 2402 system in their plant at Rosenberg, Texas. However, this system is no longer in use. They are now primarily using carbon dioxide for their frying vats (Reference 5). Fenwal Safety Systems have used Halon 2402 in some explosion suppression systems in the past.

Some of those systems **are** still in existence; however, it has proven difficult or impossible to get replacement agent (Reference 6). Halon **2402** has been used for *thrust* vector control in missiles; however, alternatives **are** under investigation (Reference 7).

NEAR-TERM REPLACEMENTS

Near-term replacements are defined as halon-like agents (halocarbons) with significant toxicological information in existence with, at the very least, data available on acute toxicity, with fire or explosion suppression testing that indicates the material could be used as a replacement for one α more halon in some applications, and the compound is or is expected to be commercially available. Here, the availability is not necessarily limited to availability as a fire extinguishant. In several cases, the chemical is or is expected to be a CFC replacement in refrigeration and other CFC applications.

Four elements are needed for an agent to qualify as a halon replacement: an acceptable environmental impact (primarily, a low **ODP**), a low toxicity, cleanliness/volatility, and effectiveness. It is relatively easy to meet any three of these requirements, but a replacement that meets all four requirements well has yet been identified. A number of candidate "near-term" replacement agents have been examined (Table 2), but all have trade-offs. None of the currently available halon replacement agents (*or* alternative agents) can be used as drop-in substitutes in existing systems and equipment. Here, we use the term "drop-in" to mean **no** change in equipment design or amount of agent storage required.

TAE	TABLE 2. NEAR-TERM REPLACEMENT CANDIDATES			
Candidate	Chemical Formula	Commercialization		
		as Halon Replacement		
HBFC-22B1	CHF ₂ Br	Great Lakes (FM 100)		
HCFC-22	CHCIF ₂	Du Pont (FE 232)		
HCFC-123	CF ₃ CHCl ₂	Du Pont (FE 241)		
HCFC-124	CF3HCIF			
HFC-23	CHF ₃	Du Pont (FE 13)		
HFC-32	CH ₂ F ₂			
HFC-125	CF ₃ CHF ₂	Du Pont (FE 25)		
HFC-134a	CF ₃ CH ₂ F			
HFC-227ea	CF ₃ CHFCF ₃	Great Lakes (FM 200)		
FC-3-1-10	C ₄ F ₁₀	3M (PFC 410)		
FC-5-1-14	C ₆ F ₁₄	3M (PFC 614)		
NAF S-III	Blend (Primarily HCFC)	N. A. Fire Guardian		
NAF P	Blend (Primarily CFCs)	N. A. Fire Guardian		
Halotron I	Blend (Primarily HCFC)	American Pacific Corp.		

In **an** attempt to compare the different replacements, information on several selection parameters was compiled in Table 3 on the list of near-term replacements.

ALTERNATIVE AGENTS

In many applications in which halons have been traditionally used, other types of fire extinguishing agents could be substituted for halogenated extinguishants. Table 4 lists some of the alternative (non-halocarbon)agents available to date. In some cases, the use of these alternative agent would also require alternative engineering or logistical approaches. Generally, water, *dry* chemicals, foam, and combination alternatives are suitable for some Halon 1211 applications, with CO_2 extinguishers also suitable in certain instances. Water sprinklers, CO_2 flooding, and inert gases are most suitable as Halon 1301 alternatives.

		TAI	BLE 3.	ASSESSMI	ASSESSMENT OF HALON REPLACEMENT CANDIDATES	IALON R	EPLACE	MENT	CANDID	ATES				
								Candidates	s					
Parameter	27R1	"	123	124	33	32	125	134a	227ca	3-1-10	S-1-14	NAF S-III	NAF P	Halotron I
	-14	550.0	00	0.022	0	•	0	0	0	0	٥	0.044 ^b	0.71	0.02
CWID mentione to CRC-11		980	0.018	960.0	13d		0.58	0.27	0.7	18.2 ^c	6-12 ^m	0.31 ^b		0.11-0.23 ^m
UWF, ICIALIVE IU CL C-11	<i>۳</i> ـ7	15.3	16	6.6	400 ^d		28.1	15.5		> 500°	>500 ^c			
Lucune, years	Now	Nou	Now		Now			Now		1993	Now	Now	Now	End 1992
Availability But Concentration % ^h	4.4 ⁱ	11.6	6.3	8.2	12.4	ġ	9.4	10.5	5.91	is.s	4.4 ^k	8.6 ^{b,l}		-6.5 ^m
WEa ^b	11	2.4	1.8	2.6	2.0	11	2.6	25	2.4	3.07	2.8	1.9		1.8
cVFn ⁰	13	3.0	2.3	2.9	4.6	1.7	3.2	3.1	25	3.03	3.1	2.3		2.30
Inertion Conc. ddp	8.0	18.8		12	19.8	17.5	14.7	13.5	12	9.5	7.2			
WEnd	16	2.5		2.6	2.2	1.4	2.8	2.2	3.2	3.5	3.8			
cVHar	1.6	3.2		2.8	4.8	2.2	3.4	2.7	3.4	3.5	3.4			
Toxicity I.C., %	10.8	27-30	3.2 ^u	23-36	66.3	>76	8	જ	×80		×30	30 ^b		~3.2 ^m
Primary Application ^w	s	T	S	Т	Т	Т	Ţ	Ŧ	L	H	S	F	S	s
 rimary Application Calculated from atmospheric data provided by Dr. A. R.Ravishankara, Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado. Provided by North American Fire Guardian, April 16, 1992. Average values from Reference 8 unless otherwise noted. Reference 10 Reference 11. Reference 11. Reference 11. Reference 11. Reference 13. Reference 13. Reference 13. Reference 14. Reference 13. Reference 14. Reference 15. Reference 16. Reference 16. Reference 16. Reference 17. A higher estimated for data supplied to EPA SNAP program by North American Fire Guardian. Brinated. 	ata provid ire Guard 8 unless of hment co ata supplii	ed by Dr. / teric Admit ian, April 1 otherwise r acentration acentration acentration	A. R.Ravis instration, 16, 1992. Ioted. of 3.9 per of 3.9 per n Referen	R.Ravishankara, Aeronomy tration, Boulder Colorado. 1992. ed. f 3.9 percent for same fuel. Reference 17. A higher esti VAP program by North Am	R.Ravishankara, Aeronomy itration, Boulder Colorado. 1992. ted. f 3.9 percent for same fuel. Reference 17. A higher estimated NAP program by North American	nated	 Calcrequire MW= NW= NWE = agents. Calcretive Calcretive<	Calculated weight of Juired for a given h W = Mole Weight, O BPC-22B1, HCFC-1 ents. Calculated storage that required for a lative to Halon 12 active to Halon 12 ative to Halon 12 Calculated weight of the required for Halon 1 Calculated storage at required for Halon 1 Calculated storage at required for Halon 1 Calculated storage at required for Halon 1 Seference 20. Reference 21. S = streaming, T S = streaming, T	ight of calibration of calibration of calibration balon (CFC-123, CFC-123, for a given 1211 for a given 1301 for a 1301	 Calculated weight of candidate required for a given halon. WEq (EC, required for a given halon. WEq (EC, MW = Mole Weight, C= Candidate, R=1 HBFC-22B1, HCFC-123, FC-5-1-14, and agents. ^o Calculated storage volume of candida of that required for a given halon. SVE Relative to Halon 1301 for HBFC-22B1 Relative to Halon 1301 for other agents. ^o Reference 18. The explosion inertion P Reference 18. The explosion inertion of a Calculated weight of candidate required for Halon 1301. WEq = (IC_C/I) required for Halon 1301. SVEq=1 that required for Halon 1301. SVEq=2 that required for Halon 1301. SVEq=2 that required for Halon 1301. WEd=1 to that required for Halon 1301. SVEq=2 that required for Halon 1301.	equired for (EC _C /EC _F R = reference and Hato didate req SVEq = W SVEq = W SVEq = W SVEq = W C/IC _R)X($c_{\rm C}/1C_{\rm R}$)X didate req is a values f at values f	^a Calculated weight of candidate required for flame extinguishment relative to that required for a given halon. WEq = (EC _C /EC _R)X(MW _C /MW _R); EC = exting. conc., MW = Mole Weight, C = Candidate, R = reference halon. Relative to Halon 1201 for other HBPC-22B1, HCFC-123, FC-5-1-14, and Halotron 1; relative to Halon 1301 for other agents. ^o Calculated storage volume of candidate required for flame extinguishment relative to that required for a given halon. SVEq = WEqX(LD _R /LD _C); LD = Liquid Density. Relative to Halon 1301 for other agents. ^o Calculated storage volume of candidate required for flame extinguishment relative to that required for a given halon. SVEq = WEqX(LD _R /LD _C); LD = Liquid Density. Relative to Halon 1301 for other agents. ^P Reference 18. The explosion inertion concentration of Halon is 4.3 percent. ^P Reference 18. The explosion inertion concentration of Halon is 4.3 percent. ^P Reference 18. The explosion inertion concentration of Halon is 4.3 percent. ^P Reference 18. The explosion inertion relative to that required for Halon 1301. SVEq = WEqX(LD _R /N _R). ^P Calculated storage volume of candidate required for explosion inertion relative to that required for Halon 1301. SVEq = WEqX(LD _R /LD _C) ^F Calculated storage volume of candidate required for explosion inertion relative to that required for Halon 1301. SVEq = WEqX(LD _R /LD _C) ^F Calculated storage volume of candidate required for explosion inertion relative to that required for Halon 1301. SVEq = WEqX(LD _R /LD _C) ^F Reference 19. ^a Reference 20. ^b S = streaming, T = Total Flood.	ushment rel V _R); EC = co lative to Halon 1 : to Halon 1 : to Halon 1 : 14, and Ha -14, and Ha -14, and Ha -14. and relative cosion inertia osion inertia	ative to that ting. conc., ilon 1211 for ilon 1211 for and to other dotron 1; percent. re to that on relative to

	TABLE 4. ALTE		NTS _	
WATER		COMBINATION		
FOAM		1.	Loaded Stream	
1.	Low-Expansion Foam	2.	other	
2	High- and Medium-	INE	RTGAS	
	ExpansionFoam	1.	Carbon Dioxide	
DRY CH	EMICAL	2.	Nitrogen	
1.	Monoammonium Phosphate	3.	Argon	
2.	Sodium Bicarbonate	4.	Helium	
3.	Potassium Bicarbonate	5.	Inert Gases	
4.	Proprietary			

HALON USE SECTORS AND SUBSTITUTES

Table 5 contains a list of specific halon applications divided into ten major groups. This table omits fire hazards for which halons have received little use (e.g., aircraft hanger fixed systems). Since for most applications, little performance difference exists between the physically acting replacement candidates (HCFCs, HFCs, and FCs), in many cases, only "streaming halocarbon," **"flooding** halocarbon," or just "halocarbon" has been noted. A streaming halocarbon is one that has suitable physical properties to allow satisfactory streaming in the application noted. Similarly, a flooding halocarbon is one that is more gaseous and will satisfactorily fill a space. Since the degree of **streaming** or total-flood capability needed depends on the application, no attempt has been made at this time to determine which candidates could be used. However, Table **3** indicates which replacements have properties making them more suitable for streaming or for total **flood.** In general, the substitutes **are** listed in order of decreasing preference based on the assessment **as** it now stands. *It must be recognized that substitutes are proposed rather than recommended.* In many cases, little or no testing has been performed to show the applicability of the suggested substitutes. Combinations of substitutes shown in Table 5 may provide optimal protection for specific applications.

TABLE 5. HALON USE	SECTORS AND SUG	JESTED SUBSTITUTES	
Application	Su	bstitutes	
A. PORTABLE EXTINC	UISHERS FOR FIXED FACILITIES		
1. Residential		Dry Chemical Carbon Dioxide Water Foam Combination	
2. Commercial	a. Offices:	Carbon Dioxide Dry Chemical Water	
	b. Manufacturing:	Dry Chemical Carbon Dioxide Water Streaming Halocarbon	
	c. Retail Sales:	Dry Chemical Carbon Dioxide Water	
3. Military and Government	a. Offices:	Carbon Dioxide Dry Chemical Water	
	b. Special Facilities:	Dry Chemical Carbon Dioxide Water Foam Streaming Halocarbon	
	I ACE APPLICATION		
1. Handheld Extinguishers for On- Board Aircraft	a. Passenger Areas	Loaded Stream Streaming Halocarbon	
	a. Cockpit	Streaming Halocarbon Carbon Dioxide	
2. Ground-Based Aircraft Fire Protection	a. Flightline	Streaming Halocarbon - Perfluorohexane - 123 œ Halotron I Carbon Dioxide	
	b. Crash/Rescue	Dry Chemical Foam	
3. Aircraft Cargo Bays		Carbon Dioxide Inert Gas Flooding Halocarbon	
4. Dry Bay Explosion Suppression		Halocarbon Dry Chemical	
5. Aircraft Engine Nacelle		Halocarbon Dry Chemical	

TABLE 5. HALON USE SECTORS AND SUGGESTED SUBSTITUTES				
Application	Substitutes			
6. Spacecraft Fire Protection	Fixed Systems:	Carbon Dioxide Inert Gas FC or HFC		
	Portable:	FC or HFC		
7. Aircraft Manufacture	Portable Plug-In Halocarbon	Carbon Dioxide		
	INE APPLICATIONS			
1. Crew Quarters	Fixed System:	Water		
	Portable:	Dry Chemical Carbon Dioxide Water		
2. Machinery Spaces	Fixed System:	Carbon Dioxide ^a Foam ^a Water ^a Halocarbon		
	Portable:	Dry Chemical Carbon Dioxide Foam Halocarbon		
3. Control Rooms	Fixed System:	Flooding Halocarbon		
4. Automobile Ferry Boats	Fixed System:	Flooding Halocarbon		
	ROUND TRANSPORTA			
1. Rail Transportation		Dry Chemical Carbon Dioxide		
2. Vehicle Fixed Systems		Dry Chemical Carbon Dioxide		
3. Vehicle Handhelds	· · · · · · · · · · · · · · · · · · ·	Dry Chemical Carbon Dioxide		
E. TOTAL-FLOOD ELECTRONICS PROTECTION				
 Nuclear Power Plant Control Rooms 	<u> </u>	Flooding Halocarbon Inert Gases		
2. Telecommunications		Water Sprinklers Inert Gases		
3. Production Control Rooms	Essential:	Flooding Halocarbon Inert Gases		
	Nonessential:	Water Sprinklers Flooding Halocarbon Inert Gases		

TABLE 5. HALON US	SECTORS AND SUGO	GESTED SUBSTITUTES	
Application	Substitutes		
4. Data Processing	 a. Occupied Areas b. Unoccupied Areas 	Water Sprinklers Underfloor CO ₂ Inert Gases CO ₂ with Prior Evacuation Flooding Halocarbon Carbon Dioxide Flood	
	0. Onoccupied Areas	Water Sprinklers Underfloor CO ₂ Inert Gases	
5. Medical Facilities		Inert Gases Water Sprinklers Flooding Halocarbon	
F. OIL PRODUCTION, RE	FINING, TRANSFER, A	AND STORAGE	
1. North Slope Facilities	a. Fixed Total-Flood Inert Gases	Flooding Halocarbon	
	b. Portable Non-Electronic	Dry Chemical Foam Carbon Dioxide	
	c. Portables Control Rooms, Electronic Areas	Carbon Dioxide Halocarbon	
2. Pipeline Pumping Stations	Fixed	Carbon Dioxide Inert Gases Flooding Halocarbon	
3. Off-Shore Oil Production	Fixed:	Flooding Halocarbon Inert Gases	
4. Other Fixed Facilities	Storage Tanks:	Foam	
	NON-ELECTRONIC F.		
1. Flammable Liquid Storage	Fixed, Unoccupied:	Foam System Carbon Dioxide Inert Gas Flooding Halocarbon	
	Fixed, Occupied:	Foam System Inert Gases Flooding Halocarbon	
 Explosion Suppression (fiberboard manufacturing, corn starch drying, incinerationsignain alguates) Inbinaries id use imslevators) 	Normally Unoccupied	Dry Chemical Halocarbon Inert Gases	
		Inert Gases Flooding Halocarbon Water Sprinklers	

TABLE 5. HALON USE SECTORS AND SUGGESTED SUBSTITUTES					
Application		Substitutes			
4. Records Storage	Unoccupied:	Carbon Dioxide Inert Gas Flooding Halocarbon Water Sprinklers			
	Occupied:	Inert Gases Flooding Halocarbon Water Sprinklers			
5. Bank Vaults and Depositories	Unoccupied:	Carbon Dioxide Inert Gas Water Sprinklers Flooding Halocarbon			
	Occupied:	Inert Gases Water Sprinklers Flooding Halocarbon			
6. Warehouses	Unoccupied	Water Sprinklers Carbon Dioxide Inert Gas Flooding Halocarbon			
	Occupied:	Water Sprinklers Inert Gases Flooding Halocarbon			
7. Cooking and Food Processing		Dry Chemical Carbon Dioxide			
H. TOTAL-FLOODPRC	MECTION OF SPECI				
 Toll Booths Antarctic Research Facilities 	Occupied:	Flooding Halocarbon Inert Gases Flooding Halocarbon			
3. Research Laboratories		Water Sprinklers Flooding Halocarbon			
4. Anechoic Chambers		Inert Gases Flooding Halocarbon			
I. APPLICATION	I. APPLICATIONS UNIQUE TO THE MILITARY				
1. Fixed Systems for Tactical Vehicles	crew Compartment	Flooding Halocarbon			
	Engine Compartment	Dry Chemical Carbon Dioxide Halocarbon			
2. Aircraft Fuel Cell Inerting		Halocarbon			
 Missile Vector Control High Security Fixed Facilities 		(?) Halocarbon Inort Coscos			
J. TRAIN	NING AND TESTING	Inert Gases			
^a Work is needed to verify applicability,					

REFERENCES

- 1. *Clean AirAct Amendments of 1990,* Conference Report to accompany S.1630, 101st Congress, 2nd Session, U.S. House of Representatives, Report 101-1952, 26 October 1990.
- 2. Arthur Kaufman, New Jersey Fire Shield, personal communication, 31 March 1992.
- 3. Harold F. Shultz, Caterpillar, Inc., personal communication, 30 March 1992.
- 4. David Wirth and Alankar Gupta, Boeing Commercial Airplane Company, personal communication, 31 March 1992.
- 5. Mark Guilland, Frito-Lay, Inc., personal communication, 6 April 1992.
- 6. Henry Garzia, Fenwal Safety Systems, personal communication, 3 April 1992.
- 7. McCarson, T. D., and Nimitz, J. S., An Assessment of Halon 2402 Emissions From Strategic Target System (STARS) Launches, Sandia National Laboratories, Albuquerque, New Mexico, 1 February 1991. NMERI, OC/91/20.
- Fisher, D. A., Hales, C. H., Wang, W.-C., Ko, M. K. W., and Sze, N. D., "Relative Effects on Global Warming of Halogenated Methanes and Ethanes of Social and Industrial Interest," *ScientificAssessment of Stratospheric Ozone: 1989*, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 20, p. 395, 1989.
- 9. Ellington, R.T., Meo, M., "Development of a Greenhouse Gas Emission Index," Chemical Engineering **Progress**, July 1990, pp 58-63.
- 10. Trowbridge, L.D. , "Greenhouse Warming Potential of Candidate Gaseous Diffusion Plant Coolants," U.S. Department of Energy, DE91009986, March 1991.
- 11. "FM-Report," Great Lakes Chemical Corporation, West Lafayette, Indiana, August 1991.
- 12. Talukdar, R., Mellouiki, A., Gierczak, T., Burkholder, J. B., McKeen, S. A., and Ravishankara, A. R., Science, Vol. 252, pp. 693-695, 1991.
- 13. Moore, T. A., Moore, J. P., and Floden, J. R., "Technology Transfer for New Laboratory Apparatuses for Fire Suppression Testing of Halon Alternatives," International Conference on CFC and Halon Alternatives, Baltimore, Maryland, 27-29 November 1990.
- 14. "FM-100, Product Information," Great Lakes Chemical Corporation, West Lafayette, Indiana, November 1990.
- Skaggs, S. R., Nimitz, J. S., Moore, T. A., and Tapscott, R. E., *Perfluorocarbons* as *Total-Flood Extinguishing Agents, Task I Report -Candidate Survey, Air* and Energy Engineering Research Laboratory, U. S. Environmental Protection Agency, Research Triangle Park, North Carolina, March 1991.

16. Report of the Halons Technical Options Committee, December 1991.

- 17. Information submitted by North American Fire Guardian Technology on NAF S-III to NFPA Technical Committee on Alternative Protection Options to Halon, October 1992. Released with permission of Elio Guglielmi, North American Fire Guardian, 6 April 1992.
- 18. Heinonen, E. W., and Skaggs, S. R., "Fire Suppression and Inertion Testing of Halon 1301 Replacement Agents," Halon Alternatives Technical Working Conference 1992, Albuquerque, NM, 12-14 May 1992.
- **19.** "FM-100, Product Information," Great Lakes Chemical Corporation, West Lafayette, Indiana, February **1991**.
- 20. "FE-232 Streaming Agent for Portable Applications," *DuPont Airernarive Fire Extinguisflants*, Data Sheet, Du Pont de Nemours & Company, Wilmington, DE.
- 21. Material Safety Data Sheet, 3M, August 1991.