EPA'S NEW REGULATORY PROGRAM FOR EVALUATING CFC AND HALON SUBSTITUTES

Elaine Haemisegger, Chief
Jerry Sheehan
SubstitutesEvaluation Section
Global Change Division
Office of Air and Radiation
US Environmental Protection Agency

Abstract

The Clean Air Act Amendments (CAAA) of 1990require the U.S.Environmental Protection Agency (EPA) to phase out production of ozone-depleting chemicals, including the halons. Under the existing provisions of the CAAA, the halons are scheduled for phaseout by the year 2000; however, recent scientific evidence of continued ozone depletion has supported current efforts to accelerate the phaseout by several years.

The CAAA also require EPA to examine and either approve or disapprove chemicals and associated processes proposed as replacements for chemicals being phased out. Section 612 specifically requires: (1) EPA to promulgate a rulemaking will prohibit the use of substitutes that pose adverse impacts on human health and the environment, (2) EPA notification at least 90 days before the introduction of substitutes (either existing or new) as replacements for ozone-depleting chemicals, (2) publication of a list of prohibited and acceptable alternatives, and (3) establishment of a process by which the public can petition EPA to add or delete substitutes from the unacceptable list. This new regulatory program, referred to as the SignificantNew Alternatives Policy (SNAP)Program, must be promulgated by November 15,1992. 'Currently, EPA is drafting the regulation to implement the SNAP program process, as well as conducting risk assessments by substitute and application to develop an initial list of reviewed substitutes. The latter activity is particularly important given the current activities to accelerate the phaseout date.

The presentation will describe the SNAP program in more detail and discuss how various criteria will be used to evaluate substitutes. The key criteria comprise human toxicity, exposure (consumer, worker, and general population), ozone depletion, global-warming potential, flammability, and economics. The presentation will then focus on the halon alternatives being examined by EPA, the general issues that are arising in context of EPA's review of these substitutes, and some (if possible) preliminary decisions regarding the acceptability of several halon alternatives. The presentation will conclude with an overview of next steps, including discussion of the remaining regulatory schedule for the SNAP program

Title VI: Major Sections) $\begin{aligned} \text { Section 604 \& 605: } & \text { Phaseout } \\ \text { Section 608: } & \text { Emission reduction and recycling } \\ \text { Section 609: } & \text { Mobile air conditioning (MACs) } \\ \text { Section 610: } & \text { Nonessential uses } \\ \text { Section 611: } & \text { Labeling } \\ \text { Section 612: } & \text { Safe alternatives }\end{aligned}$
Phaseout of Halons

Substance	EO mula	ODQ *
Halon 1211	$\mathrm{CF}_{2} \mathrm{ClBr}$	4
Halon 1301	$\mathrm{CF}_{3} \mathrm{Br}$	16
Halon 2402	$\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Br}_{2}$	7

[^0]Most Recent Findings
on Ozone Depletion

New Science
no ozone depletion until the middle of next century
(based on modeling results)
a 3 to 5 percent decrease between 1969 and 1988 in
northern hemisphere (based on monitoring data)

- ozone hole over Antarctica
ozone depletion has occurred twice as fast over last
10 years in northern hemisphere
- more international pressure to phose out in 1997
- more controls on HCFCs?
- Pre-1987:
- 1987-1990:

$$
\begin{aligned}
& \text { On February 11, 1992, President Bush annoınned that: } \\
& \text { - The US will phase-out production of Class I } \\
& \text { substances by the end of } 1995 \text { rather than by tho } \\
& \text { year } 2000 . \\
& \text {, The US will re-examine the phaseout schedule for } \\
& \text { Class II substances. }
\end{aligned}
$$

Søfe olternatives Policy:
Requirements

- By November 15, 1992, EPA must issue rules
making it unlawful to replace any Class I or
Class II with an unacceptable substitute
- ミPA must publish a list of prohibited
substitutes by use sector
- EPA must establish a petition process
- 90-day notificp ion is required prior to the use
of any new or xisting substitute as a
significant alt native

- Chlorine, ヨromine lozdings
- Ozone-depletion potential
- Total global-warming potential
- Flammability
- Chemical toxicity - Exoosures
- air, water, hazardous/solid waste
- worker, con umer, geneHtI pooulation,
\quad aquatic otgi lisms
Key Assessment Criteria (Continued) Costs
- Substitute chemicals
- Capital expenditures
- Operating (including energy costs)
- Avoided costs for meeting
environmental regulations

 －Evaluate substitutes
－by use
－in context of risks they are replaoin畧
－compared to olher available substitutes
－Prohibit only those alternatives that are
significantly worse
－Include consideration of economic feasibility －Evaluate substitutes
－by use
－in context of risks they are replaoin圆
－compared to other available substitutes
－Prohibit only those alternatives that are
significantly worse
－Include consideration of economic feasibility －Evaluate substitutes
－by use
－in context of risks they are replaoin圆
－compared to other available substitutes
－Prohibit only those alternatives that are
significantly worse
－Include consideration of economic feasibility －Evaluate substitutes
－by use
－in context of risks they are replaoin圆
－compared to other available substitutes
－Prohibit only those alternatives that are
significantly worse
－Include consideration of economic feasibility
$\frac{0}{0}$
0
\checkmark
ґиəШәб
π
Risk Mana

Agent	Benetits	Concerns
HBFC	Fire-extinguishing capability.	ODP; Toxicity (may not be acceptable in occupied areas); Addition of 1201 as a Class 1 substance.
HCFC	Lower ODP than HBFCs (though still non-zero).	Less effective than halons, HBFCs; Decomposition products; Toxicity of HCFC- 123: Phaseout.
HFC	ODP= 0; Explosion inertion capability.	Less effective than halons, HBFCs in fire suppression; GWP of HFC-125; Decomposition products.
PFC	ODD = 0; Low toxicity.	Long atmospheric lifetimes (GWP); Less effective than halons.

Comparison of Alternatives Agents

- Can HCFC-123 b μ used safely and
effectively as μ fire suppressant?
- Should the prindery SNAP decision focus
on the toxicity o | the fire-fighting agent?
- How should substitutes that have long
atmospheric lifetimes be treated?
Next Stops: Halon Assessment

- Complete Risk Assessments
- representative use scenarios
- size of use sectors, penetration of substitutes
- exposure and atmospheric analyses
Make Risk Man』 jentent Decisions
- suitability of : ubstitutes by sector
- listing of acceptable/unacceptable substitutes
Outreach
- indus ry, trade groups
- computer databases

[^0]: *UNEP Assessment, 199
 Originally, phaseout of production by 2000 under the Clean Air Act Amendments of $\$ 990$

