UPDATE ON THE EXAMINATION AND COMPARISON OF EXISTING HALON ALTERNATIVES AND NEW SUSTAINABLE CLEAN AGENT TECHNOLOGY IN SUPPRESSING CONTINUOUSLY ENERGIZED FIRES

Gordon Bengtson Jon Flamm, Richard Niemann Modular Protection[®] Corporation

INTRODUCTION

This report is a continuation of "*Examination and Comparison of Existing Halon Alternatives* and New Sustainable Clean Agent Technology in Suppressing Continuously Energized Fires" presented at HOTWC 2001. This report includes testing of conductive and modified conductive heating tests using C₆ F-ketone. Initially, C₆ F-ketone preliminary tests were performed at a concentration of 3.5% [V/V] with extinguishments. During the modified conductive heating test (electrical arc) there was re-ignition. Requirements for higher concentrations are necessary to the cup burner. This report includes testing at minimum design concentration plus 20%, 40%, and 60% for extinguishing Class "C" energized fires.

OBJECTIVE

The objective of this report, was to update the previous examination using C_6 F-ketone on Class "C" energized fires: to extinguish and prevent re-ignition. Evaluation of modified test to address a fire hazard were the ignition source is constant and the cause of the event. Verifying extinguishment occurs at 3.9%, 4.5%, and 5.1% as well as, that re-ignition would not occur using these design concentrations.

RESULTS

The test results indicated that:

Conductive Heating Tests

• Extinguishing and preventing reignition/reflash was achieved using 20% below minimum design concentration.

Modified Conductive Heating Tests

- Higher agent concentrations were needed to prevent reignition/reflash with both cables.
- Higher agent concentrations were needed to extinguishing and prevent reignition/reflash using fire resistant cable (KS-5482L28FR).

Table 1: Test Protocol

Test Protocol	Fuel	Agent	Tests Conducted	
Conductive Heating Test	1 insulation KS-709711.7 and		5	
Modified Conductive Heating Test	Conductive insulation, KS-20921L2 and		22	

Table 2: Summary of C6 F-ketone Selected Conductive Heating Test Results usingKS-20921L2 Cable Type in a Vertical Orientation

Tes	Ignition Source	Autoignition Achieved [Yes/No]	Ignition [s]	Discharge Pressure [kPa]	Design Concentration [%]	Discharge Time [s]	Time of Initial Ext. [s]	Reignition [Yes/No]
1	Pilot	No	595	655	2.6	655	661	No

 Table 3: Summary of C₆ F-ketone Selected Modified Conductive Heating Test

 Results using KS-20921L2 Cable Type in a Vertical Orientation

Test	Ignition Source	Autoignition Achieved [Yes/No]	Ignition [s]	Discharge Pressure [kPa]	Design Concentration [%]	Discharge Time [s]	Time of Initial Ext. [s]	Reignition [Yes/No]
2	Electric Arc	Yes	510	655	3.9	615	623	No
3	Electric Arc	Yes	610	655	4.5	670	676	No
4	Electric Arc	Yes	481	655	5.1	549	579	No

Table 4: Summary of C₆ F-ketone Selected Modified Conductive Heating Test Results using KS-5482L28FR Cable Type in a Vertical Orientation

Test	Ignition Source	Autoignition Achieved [Yes/No]	Ignition [s]	Discharge Pressure [kPa]	Design Concentration [%]	Discharge Time [s]	Time of Initial Ext. [s]	Reignition [Yes/No]
5	Electric Arc	Yes	650	655	3.9	725	DNE	Yes
6	Electric Arc	Yes	855	655	4.5	935	951	No
7	Electric Arc	Yes	555	655	5.1	631	660	No

DISCUSSION & CONCLUSIONS

As previously noted the conducted test does not adequately address the extinguishing characteristics for a Class "C" energized fire scenario where the ignition is the cause of the flame. However the modified conductive test provides autoignition and the means to design C_6 F-ketone total flooding system to prevent reignition/ reflash in an actual cable fire event. The C_6 F-ketone extinguished and prevented reignition/ reflash at a much lower concentration than HFC-227ea.

REFERENCES

- 1. Smith, D., Niemann, R., Bengtson, G., "Examination and Comparison of Existing Halon Alternatives and New Sustainable Agent Technology in Suppressing Continuously Energized Fires," *Proceedings*, Halon Options Technical Working Conference, Albuquerque, NM, pp.288-298, 2001.
- Niemann, R., Bayless, H., and Craft, C., "Evaluation of Selected NFPA 2001 Agents for Suppressing Class "C" Energized Fires." *Proceedings*, Halon Options Technical Working Conference, Albuquerque, NM, pp. 399-412, 1996.
- 3. NFPA 2001, Standard on Clean Agent Fire Extinguishing Systems, National Fire Protection Association, 2nd Edition, Quincy, MA 2000.
- 4. Driscoll, M., Rivers, P., 3M, "Clean Extinguishing Agents and Continuously Energized Circuits: Recent Findings, "*Proceedings*, Halon Options Technical Working Conference, Albuquerque, NM, pp. 129-140, 1997.