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(Abstract) 
Using Orthogonal Arrays to design an experimental matrix it is possible to vary a large number of 
parameters simultaneously in a designed experiment with a relatively small number of e.xperimenta1 runs 
and be able to estimate separately the effects of each of the parameters on a response variable. This paper 
will detail the use of a thtrty-two run Orthogonal Array to study the effects of &en variables on the 
pounds of agent required to extinguish a fire in a realistic dry bay test facility. Two agents (Halon 1301 
and Perfluorohe.xane) were used in the experiments. Using the orthogonal prop$ of the test matrix. 
separate estimates of amount of agent required to extinguish a fire were determined for Halon and 
Perfluorohesane. 

The paper will introduce the general concept of using Orthogonal Arrays in designing a test matrix. and 
the application of thts methodology to fire in a realistic dry bay facility. Details of the data analysis d l  
be discussed includmg use of the data to check for the reasonableness of the underlying assumpons and 
how to determine when a transformation of the original response variable is indicated. 

KEY WORDS: Orthogonal Arrays; Halon 1301; Data analysis; Designed e.uperiment. 

1. What is an Orthogonal array design matrix? 

Suppose that it is desired to design an e.xperiment study the effect of three variables: temperature, pressure 
and catalyst on the yield from a reaction. If each of the variables is to be studed at two levels (settings), 
there are eight different combinations of variable settings. 

Condtion 
1 
2 
3 
4 
5 
6 
7 
8 

Temperature 
120" 
120" 
120" 
120" 
190" 
1YO" 
190" 
1W" 

If the variable settings are coded as follows: 

Temperature 
120" (-1) 

Pressure 
5 0  psi 
50 psi 
100 psi 
1 0  psi 
5 0  psi 
5 0  psi 
100 psi 
100 psi 

Pressure 
5 0  psi (-1) 

1W" (1) 100 psi (1) 

Catalyst 
A 
B 
A 
B 
A 
B 
A 
B 

Catalyst 
A (-1) 

B (1) 
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The table of variable conditions can be expressed as: 

Condition 
1 
2 
3 
4 
5 
6 
7 
8 

Temperature 
-1 
-1 
-1 
-1 
1 
1 
1 
1 

Pressure 
-1 
-1 
1 
1 

-1 
-1 
1 
1 

Catalyst 
-1 
1 
-1 
1 

-1 
1 
-1 
1 

This is an orthogonal array. It is usually of interest to calculate the "Effect of a factor". The Effect of a 
factor is defined to be the Mcrence between the mean of all data points obtained when the factor is set at 
it's high setting and the mean of all data points obtained when the factor is set at it's low setting. The 
effect of temperature on the response is calculated as follows: the mean of the four conditions run at the 
low temperature would be subtracted from the mean of the four conditions run at the high temperature. 
An e.uamination of the e.uperimenta1 conditions in table 2 shows the effect of the orthogonality or 
"balance". The four conditions run at the high temperature have two at the low pressure and two at the 
high pressure and have two using catalyst A and two using catalyst B. The four conditions run at the low 
temperature have hvo at the low pressure and two at the high pressure and have two using catalyst A and 
two using catalyst B. This balance means that when the temperature effect is calculated the influences of 
the other factors are averaged out. A check of the table of conditions shows that this balance is also 
present for the other two variables: pressure and catalyst. 

Table 1. Design Matrix using All Eight Experimental Conditions 

Condition 
1 

2 

3 

4 

5 
6 
7 

8 

Temperature 
-1 

-1 

-1 

-1 

1 
1 
1 
1 

Pressure Catalyst 

1 1 

If only four experimental conditions were run it is still possible to retain the orthogonal array structure. 
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Table 2. Design Matrix using Half of the Eight Experimental Conditions 

Condtion 
1 
4 
6 
7 1 

The effect of temperature can be estimated from these four experimental runs. An examination of the 
design matrix in table 2 shows that the two experimental runs at the low temperature contain one run at 
the low pressure and one run at the high pressure, also one run using catalyst A and one run using catalyst 
B. Therefore, when the mean response for the experimental runs at the low temperature is calculated the 
potential influence of the other two factors is "averaged out" over both a high and a low setting. When the 
mean response for the two runs at the lugh temperature is calculated the same "balance" with respect to 
pressure and catalyst is present. 

A further examination of the design matrix shows that t h s  same balance of factors is true when the mean 
response is calculated for the low and h g h  settings for pressure and for the mean response for catalyst A 
and catalyst B. Because of tlus structure of the design matrix it is possible to use the same four data points 
to estimate the effect of all three factors: temperature, pressure and catalyst on the observed response 
variable. The price that is paid for not running all of the experimental con&tions is that interaction 
effects between variables become confounded (mixed up) with each other or even possibly with the main 
effect of a variable. The extent to whch interaction effects are confounded and the effects with wluch 
they are confounded are known for each orthogonal design matrix. 

What is an "interaction effect" 

Two factor studied in an experiment are said to "interact" if the effect of one factor on the response 
variable is affected by the setting of the second factor. 

Figure 1. 
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Figure 2. 
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In both figure 1 and figure 2 the points that are plottcd on the charts represent the mean yield at the 
indicated conditions. Figure one shows an interaction between catalyst and temperature. When the 
temperature is increased from 120" to 190" the yield increases from 40% to about 70% when catalyst A is 
used. However when catalyst B is used the increase in temperature from 120' to 190" produces very little 
change in the yeld of the process. If someone were to ask: "What is the effect on yield when the 
temperature is increased", the answer would have to be that it depends on which catalyst is being used. 
Figure 2 represents a situation where no interaction is present between catalyst and tcmperature. When the 
temperature is incTeased from 120" to 190" the yield increases at about the same rate for both catalyst A 
and catalyst B. 

2. Application to Halon testing 

An eqeriment was conducted to study fifteen variables in an aircraft dry bay test facility. The tests were 
performed at the Aircraft Survivability Range Facility (MRF) at Wright Patterson Air Force Base, Ohio. 
An aircraft dry bay is defined as a void volume within the mold lines of an airplane, excluding air inlets, 
engine compartments, and exhaust nozdes. Dry bays may contain fluid lines such as fuel, hydraulic and 
others. They may contain avionics, flight control actuators and other equipment. Dry bays are normally 
free of flammable liquids and vapors, but combat damage or equipment failure may release flammable 
liquids into the dry bay. If an ignition source is present combustion may result. 

Experimental dry bay test facilities were constructed and the following fitteen variables were studied in an 
orthogonal test matrix. The purpose of the experiment was to determine which of the variables in an 
aircraft dry bay fire have the largest influence on the amount of agent needed to extinguish a fire. 
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Table 3. The factors used and the settings for each level. 

Factor 
Agent 
External Airflow Rate 
Total Zone Volume 
Pre-Burn Time 
Fuel Temperature 
Clutter 
Bottle Location 
Bottle Pressure 
Compartment Config 
Compartment Damage 
Fuel Tank Level 
Hydraulic Line Pressure 
Internal Airflow Rate 
Fixture Orientation 
Agent Temperature 

Abbreviation 
Agnt 
Ext A. F. 
Vol 
Preb 
FmP 
Clut 
LOC 
Bprs 
conf 
D m  
Lev1 

Inte 
Ornt 
Atemp 

Hydr 

Low Setting (-1) 
Perflouro hexane 
0 ktas 
11 fi3 
5 msec 
100" F 
3 3 % 

One at end 
350 psig 
1:l L/D 
1 2"x 1 2" 
4" JP-8 
Off 
500 cfm 
0" 
-20u 

High Setting (+1) 
Halon 1301 
400 ktas 

20 msec 
150'' F 
66% 
Two at 213 
600 psig 
4:1 L/D 
7''571q 
7" JP-8 
on 
1000 cff 
90" 
150" 

100 ft' 

The response variable (called Value) was determined by an iterative bracketing method. For a given set of 
condtions an initial weight of agent would be used in the first test run, if the fire was extinguished the 
weight of agent would be halved for the next run, however if the fire was not extinguished the weight of 
agent would be doubled. When an experimental run that extingmhed the fire followed a run that did not 
extinguish the fire the next run would use the average of the two weights. This protocol was continued for 
at least four addtional test runs. The recorded response variable (Value) for a gwen set of condtions was 
the average of the least weight of agent that extinguished the fire and the maximum weight that failed to 
extinguish the fire. For example a set of test runs could be as follows: 

Test 1 Test 2 Test 3 Test 4 Value 
Weight 5 Ibs. 2.5 lbs. 3.75 Ibs. 4.38 Ibs. 1.69 Ibs 
Test result Fire out Fire not out Fire not out Fire not out 

The data analysis was also performed using the least weight of agent that extinguished the fire as the 
response variable and the conclusions were the same. 

With fifteen factors each at two settings 215 =32,768 experimental runs would be required to run each 
possible conibination of variable settings. The orthogonal design matrix given in table 4 was employed in 
the experiment. ThIs design matrix requires 32 experimental runs. 
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Ext Vol 
A. F. 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

Conf LOC 

-1 
-1 
-1 
-1 
1 
1 
1 
1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 

-1 
-1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 

Table 4. The thirty two experimental NOS 

Clut Ornt Hydr Dam lnte Atmp 

-1 
-1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 

-1 
-1 
1 
1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 

-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 

-1 
1 
1 
-1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 

Lev1 Bprs Preb Agnt Ftmp Value 

-1 
1 
1 
-1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 

-1 
1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 

-1 
1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 

-1 
1 
-1 
1 
1 
-1 
1 
-1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 

-1 
1 
-1 
1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 
1 
-1 
1 
-1 
-1 
1 
-1 
1 
-1 
1 
-1 
1 
1 
-1 
1 
-1 
1 
-1 
1 
-1 

0.47 
0.03 
0.34 
0.06 
0.09 
0.41 
0.09 
0.81 
0.61 
4.5 
0.42 
5.63 
4.06 
1.87 
4.06 
0.34 
1.18 
7.04 
6.5 
22 

32.5 
3.75 
7.5 
2.25 
3.75 
0.23 
1.63 
0.12 
0.57 
0.71 
0.2 
0.47 

ANALYSIS OF TEE FACTORIAL EXPERIMENT 

The data was first analyzed using "Yates' Algorithm" to calculate effect size and sum of squares for each 
factor and interaction between factors. The sum of squam for each factor is a measure of the variability 
between the mean response at the low setting of a variable compared to the mean response at the high 
setting. The sum of squares for each factor was then expressed as a percent of total variability. The 
larger the percent of total variability for any factor, the stronger the indication from the data that the effect 
of that factor on the response is of d c i e n t  size to stand out from the experimental error or "noise". 
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Table 5. Analysis of the dry bay experiment 

ID Yates Order 

MEAN 
I Ftmp 
2 Clut 
12 
3 Conf 
13 
23 
123 Inte 
4 Vol 
14 
24 
124 Bprs 
34 
134 Agent 
234 Damg 
1234 
5 ExtA.F. 
15 
25 
125 Lev1 
35 
135 Preb 
235 y'dr 
I235 
45 
Dummy 
245 Ornt 
1245 
345 Loc 
1345 
2345 
12345 Atemp 
TOTAL 

EFFECT 

3.56844 

2.94563 

0.899375 

0.1 55625 
-2.22688 
5.88937 
-1.29812 
3.21062 

0.364375 
-4.848t2 
0.548125 

4.16313. 

2.69938 

0.733125 

0.266875 

3.49062 

2.83938 

0.323125 

0.584375 

-0.68063 

-1 .17688 

-3.9481 3 

-0.91 188 

-1.88938 

-0.32188 

-0.79063 

-2.291 88 

-2.1 831 2 

-0.85938 

-0.58563 

-2.75188 

-1.98563 

SUM OF 
SQUARES 

3.706 
69.41 37 
11.0803 
6.471 

124.702 
0.193753 
39.671 8 
277.478 
13.481 

82.4649 
6.6521 3 
1.06215 
188.035 
2.40353 
28.5579 
138.853 

0.828828 
58.293 
5.0007 
4.29978 
42.021 5 
0.569778 
38.1283 
97.4757 
5.9082 
64.4964 
2.74365 
0.835278 
60.5825 
2.731 95 
31 S417 
1409.48 

PERCENT OF 
TOTAL 

0.262934 
4.92476 
0.786124 
0.459105 
8.84733 

.0137 
2.81463 
1 9.6865 

0.956453 
5.85072 

0.471 955 
.0754 

13.3407 
0.170526 
2.02613 
9. a371 5 
.0588 

4.1 3577 
0.35479 
0.305061 
2.981 35 

.0404 
2.7051 3 
6.91 571 

0.41 91 75 
4.57589 
0.194657 

.0593 
4.2982 1 
0.1 93827 
2.23782 

The effects with the largest percent of variability are: Vol(20%), Agent (13%), Eat A.F. (10%). There 
are no other effects with more than 10% percent of total variability. There are, however some two factor 
interactions (1&3,2&4,4&5) with percent of total variatnlity between 5% and 10%. 
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A plot of the effect sum of squares ranked in size order is shown in figure 3. 

Figure 3. 
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To further examine the data a "Normal plot" of the effects (a plot on Normal graph paper) was 
constructed With this type of design there is no replication of experimental conditions to provide an 
estimate of experimental error. An analysis method that is often used to separate real effects from noise is 
a Normal plot of the effects. Assuming that the data is approximately Normally distributed, the effects of 
the factors that have little or no influence on the response variable should plot to be a straight line on the 
Normal plot. Point that fall considerably off the line formed by the majority of plotted values suggest that 
those effects are having a stronger influence on the response. An e .dna t ion  of the Normal plot dearly 
shows factors 4 (Vol), 5 (Ext AF.), and at the low end 134 (Agent) are well of the line formed by the 
majority of points. The plot dm seems to indicate that perhaps factor 2 (Clut) and some two factor 
interactions are "off the line". 



Figure 4. Normal Plot of Effects 
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The effects that appear to lie on a line are "pooled" into a term to estimate experimental error. This 
pooling produced the following Analysis of Variance (ANOVA) table. 

Table 6. Analysis of variance Table 

EFFECT 
2 Clut 

13 
4 Vol 

24 
Agent 

SExt A. F 
25 
45 

245 Omt 
ERROR 

D. F. 
1 
1 
1 
1 
1 
1 
1 
1 
1 

22 

s. s. 
69.4137 
124.702 
277.478 
82.4649 
188.0 
138.653 
58.293 

97.4757 
64.4964 
308.472 

M. S. 
69.41 37 
124.702 
277.478 
82.4649 
188.0 
138.653 
58.293 

97.4757 
64.4964 
14.0214 

F 
4.95054 
8.89363 
19.7895 
5.881 34 
13.4105 
9.88863 
4.1 5742 
6.9519 

4.59984 

All of these effects are statistically sigruficant at the .05 level of significance. 
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Transformation of the Response Variable 
When performing an analysis of data, it is often the case that the underlying assumptions of the data 
analysis are better satisfied by using a transformation of the response variable rather than the original 
metric in which the data is reported. The model assumed for this type of analysis is of the form: 
response = Po +PIXI +P1x2 + ................. Ptxk, where Po is the mean of the data each P, is one-half the 
effect for factor i and x, is 1 if factor i is at the high setting and -1 if factor i is at the low setting. 
Common statistical practice would indicate that an analysis of the data using a logarithm of the response 
should be considered when the range of the data is large. That is, if the largest data value is more than 
10 times the smallest value. To determine ifa transformation of the data is needed, a plot of the residuals 
verses the predicted values is constructed. If the plot show a purely random pattern about zero a 
transformation is not indicated. A plot of the residuals verses the meted values was constructed. The 
plot is shown below. 

Figure 5 

Residual Values Versus Expected Values 
I 

This plot does not show the characteristics of a "random" scatter about zero that would be expected if the 
underlyng assumptions of the analysis were being satisfied. The plot indicates that an analysis should be 
considered using some transformation of the original response. A log transformation on the response was 
performed and the data reanalyzed. 
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Table 7. ANALYSIS OF THE FACTORIAL EXPERIMENT AFTER LOG TRANSFORMATION 

ID Yates Order EFFECT SUM OF PERCENT OF 
SQUARES TOTAL 

MEAN -0.0060001 1 
1 Ftmp 0.11605 0.107741 0.1 14837 
2 Clut 0.377689 1.141 19 1.21636 
12 -0.1 8976 0.288058 0.307032 
3 Conf 0.2371 76 0.45001 9 0.47966 1 
13 0.028501 0.0065 0.00693 
23 -0.41977 1.40966 1.5 
123 lntc -0.1 1227 0.100838 0.10748 
4 
14 
24 0.41 961 8 1.40863 1 SO142 
124 Bprs -0.28829 0.664879 0.708674 
34 

234 Damg 0.0795 0.0505 0.0538 
1231 0.2021 28 0.326844 0.348373 

I5 0.379964 1.15498 1.23 
25 
125 Lev1 
35 
135 Preb 
235 Hydr 
1235 
45 
Dummy 
215 Ornt 
1245 
345 Loc 
1315 
2345 
12345 Atemp 
TOTAL 

0.2221 82 
0.055985 
0.01 76 

-0.01 531 
-0.05675 
-0.0385 
0.0916 

0.186231 
0.041 5 

0.110881 
0.200364 
0.179921 

93.8202 

-0.25739 

-0.148% 

0.39491 9 
0.0251 
0.00248 
0.001 88 
0.0258 
0.01 18 
0.0671 

0.529979 
0.277457 
0.0138 
0.0984 

0.321 165 
0.258973 
0.1 76508 

0.420932 
0.0267 
0.00265 
0.002 
0.0275 
0.0126 
0.071 5 

0.564889 
0.295733 
0.0147 
0.105 

0.34232 
0.276031 
0.1 881 34 

The effects with the largest percent of variablity are: Vol(48%), Agent (28%), Eat A.F. (13%). There 
arc no other effects with more than 5% percent of total variability. 
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Figure 6 

3 
0 

#- 

0 

E a 
a 
P 

c 

CI 

2 

50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

Effect Sum of Squares After Log Transformation 
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Next a Normal plot of the effects after the Log transformation was constructed. 

Figure 7 Normal Plot of the Effects 
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Now the Normal plot is much easier to interpret. Only Vol(4), E d  A.F. (S), and, at the bottom of the 
plot. Agent (134) are seen to standout from the line formed by the other effects. The conclusion from this 
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plot is that the data give strong e\idence to indicate that only these three effects are having an influence 
on the response variable large enough to clearly stand out from the e.qerimenta1 error or "noise". 

The remaining effects are "pooled into a term to estimate exprimental error. This pooling produced the 
following Analysis of Variance (ANOVA) table. 

Table 8. Analysis of variance Table After Log Transformation 

EFFECT D. F. s. s. M. s. F 
Vol 1 45.2423 45.2423 119.574 

Agent 1 26.0859 26.0859 68.9441 
Ext A.F. 1 1 1.8977 11.8977 31.4453 
ERROR 28 10.5942 0.378364 
TOTAL 3 1  93.8202 

Next a plot of residuals versus predicted values is made to check on the fit of the model. 

Figure 8 

Residual Values Versus Expected Values 
After Log Transformation 
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The residual plot now looks much more llke a random scatter plot of points about zero. 

3. Conclusion 

The data analysis was performed on the original response variable (Weight of agent required to extingush 
fire) and on the Logarithm of the response. The conclusions were similar for both analyses. The three 
most important factors influencing the response were: External Airflow Rate, Total Zone Volume, and 
Agent. Without the logarithm transformation it appeared that some two factor interactions and possibly 
clutter may be standmg out from the Noise also. However, the residual plot gave a strong indication that a 
transformation was necessary for the assumptions underlymg the analysis to be satisfied The analysis of 
the data after the log transformation confirmed the value of the transformation. The three effects: 
External Airflow Rate, Total Zone Volume, and Agent stood out more clearly as the only effects having 
a substantial influence on the response. The residual plot after making the log transformation gave a 
strong indtcation that the residual terms were randomly distributed and were independent of the mean 
response. 
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