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Outline

e Rydberg atom-based Sl traceable measurements

for electric fields

e Rydberg atom-based Sl traceable measurements

for power

e Other applications
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Re-definition of the Sl in 2018
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The world of measurement science changed with the Sl redefinition that occurred in November 2018.

As a result of the shift towards fundamental physical constants, we can rethink about how Sl traceable
measurements and calibrations are done.

Hence, we are developing fundamentally new methods for Sl traceable measurement techniques for E-
field and RF power (defined as 100’s MHz to just below THz).
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Electric Field Measurements
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What are We Trying to Solve: Calibrating an E-field Probe

Somewhat of a
“Chicken-or-Egg”

Ty dilemma

To calibrate a probe, one must place the probe (sensor) in a “known” field.

However, to know the field we need a calibrated probe.
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What are We Trying to Solve: Current Techniques

E-field Probe

Limitations:

Field-levels: about 100 mV/m

e Requires calibration

Perturbs the field (due to metal)
Relatively large in size

To calibrate the probe, we need a “known” field.
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What are We Trying to Solve: Generating a Known Field

Horn antenna in an anechoic chamber TEM cell

At the 2015 EMC Europe conference probe manufacturers
stated that their probes only allow them to measure fields
no better than 10 %.

GTEM cell

0.5 dB (or 5%) accuracy
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Rydberg Atom Based Technique

25000
22500 ‘3’_4'%‘/ RF freq.
Rydberg atoms are atoms with one el el I
12) b 5P3n
electron excited to a very high principal =

15000 —

quantum number n, i.e., r, is very large. o500

—
Rydberg states have very large dipole moments: / 7500 —
5000 — #

Meaning they are very sensitive to RF E-fields ] ° o oy
(making for good RF E-field sensors). 0] s

Qrp (RRrr/ag)

0 [N L L O L L I B B B
10 20 30 40 50 60 70 80 90 100 110 120 130
n

We us electromagnetically induced transparency (EIT) for the E-field sensing,

either on resonance (Autler-Townes (AT) splitting) or off resonance (AC Stark shifts).
AC Stark shifts

Probe and coupling laser on and RF off
"

10 MHz Voltage Sweep

Autler-Townes (AT) splitting
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Rydberg Atom Based Technique: Purpose

e Develop an Sl traceable microwave Electric-field measurement technique.
e Develop an Sl traceable microwave Power.
e Implement in a compact Sl traceable probe

eUseful as...
—Stand alone probe usable for test and measurement
—Calibration of existing probes
—Calibration of existing test facilities
—Calibration of existing power heads apor cell
—Other Applications
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IMPACT by NIST: Historical Perspective - eight years of effort

2010: NIST wrote paper discussing using Rydberg atoms for S| measurements of electric fields

2011: DARPA funded to two groups on atom-based electric field sensors:

one lead from the University of Oklahoma: Sedlacek et al., 2012
one lead from of NIST: _Hallawav ot al 2014

Because of the success of this program, several groups around the world (including
2014-Present: Great PI National Metrology Institutes, private companies, universities, and other government »rld.
laboratories) have started programs in the area of Rydberg atom-based sensors.

Including: USA, Germany, UK, Canada, China, Japan, South Korea, India, New Zealand, etc..

Gov. Labs: NIST, DOD, DOE, National Institute of Metrology (China), NPL (UK), etc..

Universities: U of Michigan, U of Oklahoma, U of Stuttgart, Durham Univ., U of Colorado, U of Maryland, Shanxi University, U College London, U of Ele.
Science and Technology, U of Otago, U of Chinese Academy Sciences, Chongging University, Institute of Laser Spectroscopy, Jiliang University, Jiliang
University, Shandong University of Science and Technology, Pusan National University, Beijing Institute of Technology, etc

Several private companies: Rydberg Technologies, MITRE, SRI, other that | cannot mention, etc
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Electromagnetic Induced Transparency (EIT) for Sl Traceable 4 rements

Probe Laser Ress
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EIT: Room Temperature Measurement




EIT: Room Temperature Measurement
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Typical Experiment Result for the EIT Signal

A ® ©® O Atoms-based Measurements
| El =2m — A f Far-field calculation
§

Numerica@imulations

These results for >110 GHz are important
from a calibration viewpoint.
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Fiber-Coupled Probe: Moving Probe OFF Optical Table
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IMPACT by NIST: Historical Perspective - eight years of effort

Amplitude: Most of this work was toward amplitude of the E-field: [NIST and a few others].

Polarization: [Sedlacek et al., APL, 2013].

The missing link was “phase” |

Phase: NIST-[Simons et al., APL, 2019].

We can now fully characterize a radio frequency field, in that the
amplitude, phase, and polarization of the field can be determined in one
compact guantum-based sensor.

We can now start looking at a wide array of applications.
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Rydberg Atom Mixer: Measuring Phase

CW carrier: Phase Shift
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Rydberg Atom Mixer: Phase Modulation for Communications
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What Else Can We DO: Quantum-Physics-Meets-Music
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It is quite amazing that over the past decade we have learned to
control ensembles of atoms to such an extent that they can be used
to record musical waveforms (and a wide array of other applications).
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Holloway et. al., AIP Advanced, vol. 9, no. 6, 065110, 2019: Featured article at phys.org




AM/FM Stereo Reception

Dual Atomic Species Stereo Reception:
Instrumental on Rb atoms
Vocals on Cs atoms
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Other Applications

AVC array
Vapor cell pixel

v

e Atom-based receivers/antennas

e Quantum RF imaging and visualization technology (RF camera)

* Quantum-enabled medical imaging and diagnostics

e Plasma sensors

e Atomic DC/AC voltage and current references

e Atomic thermal field sensing and measurement (blackbody radiation calibrations)

* Single microwave photon detection

 Quantum storage of radio frequency, microwave, and THz photons using slow
light effects in Rydberg gases. (Quantum encrypted Rydberg atom quantum PR A e
receivers from 1 GHz to 1 THz) _

* Waveguide Power Measurements: Power Calibrations T e

* Sub-wavelength imaging

* Near-field imaging

 Measuring Noise sources
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RF Atomic-Vapor-Cell (AVC) Camera

AVC array
Vapor cell pixel

RF Image
RF AVC Camera _o0 .

=30 -20 10 0

x [mm]




Traceable Reference Fields for mmWave Wireless: Calibrated Facilities

Applications

Environment Characterization Path

TX RX
Antenna Fixture

— Bl B "

Traceable A D W
Modulated- -\ RxDIgo
Angle of Incid b v, Y
FY15 | =
( ) @ e Calibratioi  og | :
NIST Calibrated 7 : Ehgnne.l > 2y | 9% wl Stage
mmWave Modulated etlective 10 _ T ) '.'-‘ _—
Signal Source ~ !
28 - 94 GHz 'E'
E 0
k-2
/ %/ ~10

Amplitude and Phase of E-field in Chamber

x [mm]
¥ AN T NN UL

Advantage: The SAMURAI system can be slow due to mechanical scan,
wh|Ie the Rydberg atom approach is optlcally scanned. Emulated 3D Channel for

. - 3GPP “New Radio” (FY19/20)
\\‘ uncertalnty (FY18) ‘ ‘ (FY18/19) ‘ / \




Sl Traceable Power

We now have a Sl traceable E-field measurement.

What else can we do?

NEW Atom-Based Sl traceable Power Measurements.
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Sl Traceable Power

TE,, mode in rectangular waveguide
only alloweg-node at measurement frequency

in™ Je=itaprpribety

Y% sinusoid inX;constant in y, partial standing wave in z

Transmitted Power

_p2ab [eo 4 _ (Y
Porans = B3 [2 1= (557)

Depends on E, physical constants (&,, ,, ), and geometry (a,b)

We measure E with the Rydberg atoms and power is traceable to Planck's constant.
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Sl Traceable Power
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S| Traceable Power: New Paradigm--Calibrated Source

Current State of the Art ‘

Energy meter

Absorption-based lT
Energy oc AT >

Calibration through the power meter Incident Energy

(RF or optical)

Real-time “in situ” traceability ‘
RF
source -
Calibrated Relies on VNA in calibration
Rydberg output power

cell
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Summary

Fundamentally new approach for E-field and Power measurements

E-Fields
*Broadband probe/sensor: 10 MHz-to-500 GHz (possibly to 1 THz)

*Will allow direct Sl units linked RF electric field (E-field) measurements

*\Would provide RF field measurements independent of current techniques

*Very small and compact probe: fiber-coupled atom-based probe

*Measure weak and large E-field strengths over a large range of frequencies :
<1 puV/m and > 10 kV/m: apor cell

POWER
S| traceable Power measurements

eCalibrations above 110 GHz

glass window

filling stems

*Real-time power calibrations

The bottom line is that we would be developing a measurement
technique that could be applied to various form factors and applications.
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??Questions??

i

vy
vapor cell

apor cell

coax adapter

-

"---..._.__._ =
‘

v

glass window

filling stems

[ L]
o _o°

National Institute of ®
Standards and T“h"nl“r ‘ T L Communications
LS. Department of Commerce Technology Laboratory




	Quantum SI Traceable Measurements and Calibrations:�Radio Frequency Electric Fields and Power
	Outline
	Re-definition of the SI in 2018
	Electric Field Measurements
	What are We Trying to Solve: Calibrating an E-field Probe
	What are We Trying to Solve: Current Techniques
	What are We Trying to Solve: Generating a Known Field
	Rydberg Atom Based Technique
	Rydberg Atom Based Technique: Purpose
	IMPACT by NIST: Historical Perspective - eight years of effort
	Electromagnetic Induced Transparency (EIT) for SI Traceable Measurements
	       EIT: Room Temperature Measurement
	       EIT: Room Temperature Measurement
	Typical Experiment Result for the EIT Signal
	Typical Experiment Result for the EIT Signal
	Fiber-Coupled Probe: Moving Probe OFF Optical Table
	IMPACT by NIST: Historical Perspective - eight years of effort
	Rydberg Atom Mixer: Measuring Phase
	Rydberg Atom Mixer: Phase Modulation for Communications
	What Else Can We DO: Quantum-Physics-Meets-Music
	AM/FM Stereo Reception
	Other Applications
	RF Atomic-Vapor-Cell (AVC) Camera
	Traceable Reference Fields for mmWave Wireless: Calibrated Facilities
	SI Traceable Power
	SI Traceable Power
	SI Traceable Power
	SI Traceable Power: New Paradigm--Calibrated Source�
	Summary
	Journal Publications on Rydberg Atom Sensors
	Conference Papers on Rydberg Atom Sensors
	??Questions??

