
Quantification of Firebrand Production 
from WUI fuels for Model Development

Michael J. Gollner
Associate Professor and Deb Faculty Fellow

Department of Mechanical Engineering
University of California, Berkeley

Photo Credit: Melia Robbinson

Mohammadhadi Hajilou
Postdoctoral Scholar

University of California, Berkeley
Incoming Assistant Professor

University of Portland

firelab.berkeley.edu 

http://firelab.berkeley.edu/


Berkeley Fire Lab Research
How do Wildfires Spread?

• Fluid dynamics & heat transfer

Fire Whirls
• Efficient Multi-Fuel Combustion
• Oil Spill Cleanup

How do Fires Ignite Communities?
• Embers (laboratory)
• WUI risk/spread modeling

Fire Emissions & Health Effects
• Fuel/fire effects
• Risk to firefighters

Spacecraft Fire Safety
• Flammability, batteries

https://firelab.berkeley.edu

firelab.berkeley.edu
Gollner ad Fernandez-Pello

https://firelab.berkeley.edu/


Outline
• WUI Fire Problem
• Firebrand Ignition Studies
• Firebrand Generation – Completed Work
• Future work on Firebrand Generation
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2017 Nor Cal Fires
Loss ~$14.5B, 

22 deaths

2018 Camp Fire
Loss ~$16.5B, 

85 deaths



Hung T. Vu/Record Searchlight

NIFC now has officially adopted the term 
“Megafires”

Over 100,000 acres



Drivers of Change

Increasing incidence of extreme fires due to:

1. Climate change
Drought, extreme fire weather, pine beetles, etc.

2. Fire exclusion 
Buildup of trees/brush due to suppression and removal of Indigenous fire

3. Expanding Wildland-Urban Interface
Vulnerable structures & increased ignition sources





Pathways to Fire Spread
Radiation

Originally thought to be responsible for most/all ignitions
Direct Flame Contact

Smaller flames from nearby sources
Embers or Firebrands

Small burning particles which cause spot ignitions

Separation Distance

Height of 
Flames
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Pathways to Fire Spread
Radiation

Originally thought to be responsible for most/all ignitions
Direct Flame Contact

Smaller flames from nearby sources
Embers or Firebrands

Small burning particles which cause spot ignitions
Nathan Trauernicht, UC Davis Fire @ Tamarack Fire



Firebrand Ignitions

Union Tribune

Most homes at the 
Wildland-Urban Interface 
ignite due to small, flying 
embers, not the main fire

Maranghides, Mell, 2009, A Case Study of a Community 
Affected by the Witch and Guejito Fires (NIST TN 1635)



WUI Disaster Sequence

Severe Wildfire 
Conditions

Extreme Fire 
Behavior

WUI Fire Disaster

High winds, dry fuels

High fire intensity & growth rates

Many home ignitions

Overwhelmed resources 
diminish in effectiveness

Fire Protection Resources

Residential Fires

Potentially 100’s + homes 
destroyed

Adapted from Calkin, et al., 2014. PNAS. 111, 746–51. 



WUI Disaster Sequence

Severe Wildfire 
Conditions

Extreme Fire 
Behavior

WUI Fire Disaster

High winds, dry fuels

High fire intensity & growth rates

Many home ignitions

Overwhelmed resources 
diminish in effectiveness

Fire Protection Resources

Residential Fires

Potentially 100’s + homes 
destroyed

Hardening Structures/Communities
• Codes & Standards (e.g. CBC Chp. 7A)
• Community Programs (e.g. Firewise)
• Defensible Space

Reducing Exposure
• Community Design
• Fuel Reduction
• Prescribed Fire

Adapted from Calkin, et al., 2014. PNAS. 111, 746–51. 

Improve Response
• Notification
• Evacuation
• Response Coordination
• Planning & Communication



Figure by Tohidi et al., 2015
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Figure by Tohidi et al., 2015

Firebrand Formation and Break-off
Only 2 models:

Barr & Ezekoye

Tohidi et al.

Still not complete

Firebrand Generation and Transport



Figure by Tohidi et al., 2015

Firebrand Generation and Transport
Generation Measurements

Trees: Lab, no wind
Manzello et al.

Manzello, Maranghides, Mell, IJWF, 2007, 16, 458–462; El Houssami et al., Fire Technology 2016

Field Measurments

Generation Under Wind
(IBHS - Farahani, Tohidi)



Firebrand Generation and Transport



Firebrand Ignition Studies – Past Work 

"Critical ignition conditions of wood by cylindrical firebrands." Frontiers in Mechanical Engineering 7 (2021): 17.

Door & Window

Variable
Fan

Deposition 
Funnel

Flow 
Straightener

Sensor Array

Fan

Test Section Contraction cone

Honeycomb

Hamed Salehizadeh
Raquel Hakes Weston-Dawkes



Firebrand Ignition – Single vs. Pile
Single 12.7 mm Firebrand:

Pile of 10 g deposited mass, 12.7 mm firebrands:

Instantaneous Average Peak 

Raquel Hakes Weston-Dawkes



Ember Studies – Wind Effects on Heating
• Heat flux averaged between tests from WC-HFG (16 g)

Outer TSCs

Inner 
TSCs

WC-HFG

Increasing wind speed

Increasing wind speed

"Critical ignition conditions of wood by cylindrical firebrands." Frontiers in Mechanical Engineering 7 (2021): 17.
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Ignition & Heat Flux in a Crevice
Bryce Bathras

Julia Barbetta Duarte



Heat Flux in a Crevice
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Firebrand Generation



Firebrand Generation Objectives
– How much of a burning fuel burns & transitions to firebrands vs. product gases?

• Provide quantitative data on firebrand generation through the burning of WUI fuels in a 
laboratory-scale wind tunnel 

• Function of ignition condition, fuel size & type, moisture content, wind speed
• Enable a simple multi-variable regression model which can be used to estimate the mass 

and number of firebrands from a full-sized fuel sample

– Important input for fire simulations
• Fire Dynamics Simulator (FDS)
• Link to input variables (heat-release rate)



Experimental Setup

M. Hajilou, S. Hu, T. Roche, P. Garg, M. Gollner, Fire Technology 57 (2021)  

Side view Top view



Experimental Setup



Wind Speed Characterization



Previous Work
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Douglas FirLodgepole pine

M. Hajilou, S. Hu, T. Roche, P. Garg, M. Gollner, Fire Technology 57 (2021)  

• FMC: 3%
• Length: 10-15 cm
• Davg of lodgepole pine: 6.2 ± 1.9 mm 
• Davg of Douglas fir: 2.9 ± 0.8 mm



Previous Work



Firebrand Yield, Lodgepole Pine

Dry lodgepole pine @ 4 m/s wind speed: 3% FB yield

M. Hajilou, S. Hu, T. Roche, P. Garg, M. Gollner, Fire Technology 57 (2021)  



Firebrand Yield, Douglas fir

Dry Douglas fir @ 4 m/s wind speed: 4% FB yield

M. Hajilou, S. Hu, T. Roche, P. Garg, M. Gollner, Fire Technology 57 (2021)  



Gaseous Species and HRR

Gaseous species 
concentrations

Mass of generated gases & 
Heat Release Rate

M. Hajilou, S. Hu, T. Roche, P. Garg, M. Gollner, Fire Technology 57 (2021)  



Carbon Balance, MCE, EF
Carbon in Fuel = Carbon in Product Gases + Carbon in Firebrands + Carbon in Fuel Residue

EF = !"## $% &'$()*+ #&,*-,# [/]
!"## $% *$1#)2,( ('3 %),4 [5/]

η = !"## $% 6"'7$1 -1 68! [/]
!"## $% 6"'7$1 -1 68! / 9!"## $% 6"'7$1 -1 68 [/]
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Average values for dry Douglas fir:

η = 90.28 ± 1.91 %

EFCO = 76.51 ± 10.91

EFCO2 = 726.90 ± 90.75 

Good agreement with other studies

M. Hajilou, S. Hu, T. Roche, P. Garg, M. Gollner, Fire Technology 57 (2021)  



Improved Wind Tunnel Design



Ongoing Work

• Wind speed: 0 - 8 m/s
• Different fuel types
• Firebrand yield
• Carbon mass balance



Left: Pressurized plenum to generate flow
Bottom: Test section (combustion chamber) which deposits
into a water tray below a calorimetry hood



Thank you!




