Quantification of Firebrand Production from WUI fuels for Model Development

Michael J. Gollner

Associate Professor and Deb Faculty Fellow

Department of Mechanical Engineering University of California, Berkeley

Mohammadhadi Hajilou

Postdoctoral Scholar University of California, Berkeley Incoming Assistant Professor University of Portland

firelab.berkeley.edu

GORDON AND BETTY

Berkeley Fire Research Lab

Photo Credit: Melia Robbinson

Berkeley Fire Lab Research

firelab.berkeley.edu Gollner ad Fernandez-Pello

How do Wildfires Spread?

Fluid dynamics & heat transfer

How do Fires Ignite Communities?

- Embers (laboratory)
- WUI risk/spread modeling

Fire Emissions & Health Effects

- Fuel/fire effects
- Risk to firefighters

Fire Whirls

- Efficient Multi-Fuel Combustion
- Oil Spill Cleanup

Spacecraft Fire Safety

• Flammability, batteries

https://firelab.berkeley.edu

Berkeley Fire Research Lab

National Institute of FOUR Standards and Isolanalogy U.S. Department of Commune

Outline

- WUI Fire Problem
- Firebrand Ignition Studies
- Firebrand Generation Completed Work
- Future work on Firebrand Generation

California – A History of Fire

Berkeley Mechanical Engineering

California – A History of Fire

Berkeley Mechanical Engineering

California – A History of Fire

Berkeley Mechanical Engineering

22 deaths

oss ~\$16.5B, 85 deaths

TOP 20 DESTRUCTIVE CALIFORNIA WILDFIRES

Senate Energy and Natural Resources Committee

Drivers of Change

Increasing incidence of *extreme* fires due to:

- 1. Climate change Drought, extreme fire weather, pine beetles, etc.
- 2. Fire exclusion Buildup of trees/brush due to suppression and removal of Indigenous fire
- 3. Expanding Wildland-Urban Interface Vulnerable structures & increased ignition sources

Photo: Noah Berger

2017 Nuns Fire (Napa)

Why are our communities burning?

Coffey Park Santa Rosa, CA Tubbs Fire – previously most destructive in CA history

Radiation

Originally thought to be responsible for most/all ignitions **Direct Flame Contact**

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which

Radiation

Originally thought to be responsible for most/all ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions

Radiation

Originally thought to be responsible for most/all ignitions

Direct Flame Contact

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions

Radiation

Originally thought to be responsible for most/all ignitions **Direct Flame Contact**

Smaller flames from nearby sources

Embers or Firebrands

Small burning particles which cause spot ignitions

Firebrand Ignitions

Most homes at the Wildland-Urban Interface ignite due to small, flying embers, not the main fire

Maranghides, Mell, 2009, A Case Study of a Community Affected by the Witch and Guejito Fires (NIST TN 1635)

WUI Disaster Sequence

Severe Wildfire Conditions

High winds, dry fuels

Berkeley Mechanical Engineering

Adapted from *Calkin, et al., 2014. PNAS. 111, 746–51.*

WUI Disaster Sequence

Hardening Structures/Communities

- Codes & Standards (e.g. CBC Chp. 7A)
- Community Programs (e.g. Firewise)
- Defensible Space

Many home ignitions Extreme Fire Behavior

Residential Fires

High fire intensity & growth rates

Severe Wildfire Conditions High winds, dry fuels

Berkeley Mechanical Engineering

Reducing Exposure

Community Design

Fire Protection Resources

Overwhelmed resources

diminish in effectiveness

- Fuel Reduction
- Prescribed Fire

WUI Fire Disaster

Potentially 100's + homes destroyed

Improve Response

- Notification
- Evacuation
- Response Coordination
- Planning & Communication

Adapted from Calkin, et al., 2014. PNAS. 111, 746-51.

Figure by Tohidi et al., 2015

Firebrand Generation and Transport

Firebrand Generation and Transport

Firebrand Formation and Break-off Only 2 models:

<u>Barr & Ezekoye</u>

Still not complete

Figure by Tohidi et al., 2015

oure by Tohidi et al., 2015

Manzello, Maranghides, Mell, IJWE 2007, 16, 458–462; El Houssami et al., Fire Technology 2016

Firebrand Generation and Transport

Firebrand Ignition Studies – Past Work

Hamed Salehizadeh Raquel Hakes Weston-Dawkes

Berkeley Fire Research Lab

"Critical ignition conditions of wood by cylindrical firebrands." *Frontiers in Mechanical Engineering* 7 (2021): 17.

Firebrand Ignition – Single vs. Pile

Raquel Hakes Weston-Dawkes

Pile of 10 g deposited mass, 12.7 mm firebrands:

Ember Studies – Wind Effects on Heating • Heat flux averaged between tests from WC-HFG (16 g)

UNIVERSITY OF CALIFORNIA MECHANICAL ENGINEERING

"Critical ignition conditions of wood by cylindrical firebrands." Frontiers in Mechanical Engineering 7 (2021): 17.

Ignition & Heat Flux in a Crevice

Julia Barbetta Duarte

16.3 2.3

Pressuretreated wood

0°°C Crévice

Board thin skin (16) ~

WC-HFG

Wall thin-skin (8)

Bottom thin-skin (4)

Wind speed

Berkeley Fire Research Lab

UNIVERSITY OF CALIFORNIA J MECHANICAL ENGINEERING

Firebrand Generation

Firebrand Generation Objectives

- How much of a burning fuel burns & transitions to firebrands vs. product gases?
 - Provide quantitative data on firebrand generation through the burning of WUI fuels in a laboratory-scale wind tunnel
 - Function of *ignition condition*, *fuel size* & *type*, *moisture content*, *wind speed*
 - Enable a simple multi-variable regression model which can be used to estimate the mass and number of firebrands from a full-sized fuel sample
- Important input for fire simulations
 - Fire Dynamics Simulator (FDS)
 - Link to input variables (heat-release rate)

Experimental Setup

Wind Speed Characterization

Previous Work

- FMC: 3% ٠
- Length: 10-15 cm •
- D_{avg} of lodgepole pine: 6.2 ± 1.9 mm D_{avg} of Douglas fir: 2.9 ± 0.8 mm

Previous Work

Firebrand Yield, Lodgepole Pine

Dry lodgepole pine @ 4 m/s wind speed: <u>3% FB yield</u>

Firebrand Yield, Douglas fir

Dry Douglas fir @ 4 m/s wind speed: <u>4% FB yield</u>

Gaseous Species and HRR

Mass of generated gases & Heat Release Rate

Carbon Balance, MCE, EF

Carbon in Fuel = Carbon in Product Gases + Carbon in Firebrands + Carbon in Fuel Residue

Improved Wind Tunnel Design

Firebrand collector

Berkeley Fire Research Lab

Ongoing Work

- Wind speed: 0 8 m/s
- Different fuel types
- Firebrand yield
- Carbon mass balance

Rerzelev Fire Research Lab

Left: Pressurized plenum to generate flow Bottom: Test section (combustion chamber) which deposits into a water tray below a calorimetry hood

Thank you!

