
This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

1 

Proceedings of the 2011 Pressure Vessels & Piping Division (PVPD) Conference 

July 7-11, 2011, Baltimore, MD, USA 

 

PVP2011-57683 

IDENTIFYING FAILURE SCENARIOS IN COMPLEX SYSTEMS 

BY PERTURBING MARKOV CHAIN MODELS 
 

 

Christopher Dabrowski 
National Institute of Standards and Technology 

Gaithersburg, MD, USA 

Fern Hunt 
National Institute of Standards and Technology 

Gaithersburg, MD, USA 
 

ABSTRACT 
In recent years, substantial research has been devoted to monitoring 

and predicting performance degradations in real-world complex 

systems within large entities such as nuclear power plants, electrical 

grids, and distributed computing systems. Special challenges are posed 

by the fact that such systems operate in uncertain environments, are 

highly dynamic, and exhibit emergent behaviors that can lead to 

catastrophic failure. Discrete Time Markov chains (DTMCs) provide 

important tools for analysis of such systems, because they represent 

dynamic behavior succinctly, provide a means to measure uncertainty, 

and can be used to make quantitative measurements of the potential for 

change to system performance. Moreover, DTMCs can be extended to 

be time-inhomogeneous, i.e. to represent behavior that varies over 

long durations. To date, DTMCs have been proposed for tasks such as 

fault detection and long-term condition equipment monitoring in real-

world complex systems. However, the scope of these models has 

generally been restricted to describing states and state transitions that 

directly concern fault conditions or states of degradation. Less work 

has been done on using DTMCs to represent a more complete range of 

states a system may enter into during normal operation. Of special 

interest are sequences of states that involve failure scenarios, in which 

a system evolves from a normal operating state into undesirable state 

that leads to widespread performance degradation. Unfortunately, use 

of large DTMCs often involves large search spaces, a problem which 

in part motivates our work. This paper describes progress made on 

developing an approach for using larger, more detailed DTMC models 

of operational complex systems to uncover potential failure scenarios. 

The approach uses a combination of methods to perturb a DTMC, 

simulate alternative system evolutions, and identify scenarios in which 

a system proceeds from normal operation to failure. Key to the 

approach is the use of graph theory techniques to reduce the size of the 

search space involved in exploring alternative behaviors. We show 

how graph theory techniques can be used to identify critical state 

transitions which can be perturbed to simulate performance 

degradation. Using critical transitions, it is also possible to estimate 

the rate of performance degradation and to understand how this rate is 

likely to change in response to increased failure incidence. Examples 

are provided of the use of this approach on a DTMC of significant size 

to identify failure scenarios in a distributed resource allocation system.  

 

I. INTRODUCTION 
         In recent years, substantial research has been devoted to 

monitoring and predicting performance degradations in real-

world complex systems within large entities such as nuclear 

power plants, electrical grids, and distributed computing 

systems. Such systems pose special challenges because they 

operate in uncertain environments, are highly dynamic, and may 

exhibit emergent behaviors that lead to catastrophic failures.  

         Markov chains provide a basis for modeling complex 

system dynamics, because they can represent dynamic behavior 

succinctly, provide a means to capture uncertainty, and can 

model evolution of system behavior over long durations. To 

date, Markov chain models have been proposed for tasks such 

as fault detection [1–4] and long-term condition monitoring of 

equipment in complex systems [5–8]. Generally, such models 

have been concerned with in-depth analysis of specific 

processes within larger systems, focusing on fault conditions 

and related stages of degradation. While such concise, focused 

models lend themselves to tractable analysis, they are often less 

able to capture the broader operational context in which a 

system degrades from normal operation into a failed state. A 

model that represents a more complete range of states that a 

system may enter can facilitate a more detailed understanding of 

how failures evolve. Such a model can also provide a basis for 

exploring alternative scenarios and reveal unsuspected potential 

failures. However, analysis of more detailed, comprehensive 

models is often complicated due to their substantial size.  

        In this paper, we describe an approach for using a Discrete 

Time Markov chain (DTMC) to investigate dynamic system 

behavior and identify potential failure scenarios in which 

system-wide performance collapses. The approach employs a 

combination of analysis techniques, which have heretofore not 

been used together in order to analyze DTMCs of significant 

size. First, the DTMC describes a detailed set of states that a 

system may enter and through which it can progress along 

different paths. The model is at a sufficient level of detail so as 

to provide a basis for pinpointing how a system may degrade 

from normal operation into a failed state. Second, a set of 

transition probability matrices (TPMs) can be used to simulate 

the advance of the system through these states in discrete time 

steps. Each TPM represents a different time period and contains 

probabilities for transitioning between states that are specific to 

that period. The TPMs are sequenced to enable simulation of 

system evolution over time, thus making the DTMC time-

inhomogeneous. Third, the model can be perturbed to change 

the probabilities of transitions between states in order to explore 

alternative execution paths. This allows the analyst to see how a 

system might behave when certain events occur or conditions of 

javascript:%20window.open('','PaperDetail','HEIGHT=500,WIDTH=650,scrollbars,resizable');%20document.PaperDetail.PaperID.value=683;%20document.PaperDetail.submit();
javascript:%20window.open('','PaperDetail','HEIGHT=500,WIDTH=650,scrollbars,resizable');%20document.PaperDetail.PaperID.value=683;%20document.PaperDetail.submit();


This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

2 

interest arise. Using this information, the analyst can identify 

failure scenarios in which system performance may be affected 

catastrophically. By failure scenarios, we mean the occurrence 

of real-world events that lead to system performance collapses, 

which can be represented by perturbing the DTMC. The 

perturbed DTMC can then be made to simulate the altered 

performance of the system as the incidence of failure increases 

in order to obtain a quantitative estimate of the rate of 

performance decline and to identify thresholds beyond which 

performance collapses. This enables a more precise 

understanding of how and where failures may occur and their 

potential consequences. Fourth, we demonstrate the application 

of graph theory concepts to identify critical state transitions in 

the DTMC, which when suitably perturbed, reveal the potential 

for performance collapse and the existence of failure scenarios. 

To reduce the amount of search needed to find critical 

transitions, we employ minimal s-t cut set analysis on the 

directed graph of the DTMC. We argue that this method is far 

more computationally efficient than exhaustive examination of a 

large space of alternative executions and enable tractable 

perturbation of larger, more detailed DTMCs. Further, this 

method can be used to reveal previously unsuspected potential 

failures, which may be difficult to detect using other methods. 

       To demonstrate the use of this combined technique, we 

created a detailed, time-inhomogeneous, absorbing DTMC [9] 

for a cloud computing system. The focus of the DTMC is the 

process of requesting and obtaining computing resources from 

the cloud. The DTMC consists of 39 states and 139 potential 

transitions that encompass both normal and abnormal 

operations. This DTMC is based on a discrete event large-scale 

simulation model described in [10], which we also use as a 

proxy for a real-world system in this study. This 39-state model 

is far larger than previous models we have analyzed [11–13], 

which consisted of only seven states. To this DTMC, we apply 

our combined method to find likely failure scenarios, which we 

verify in the large-scale model. We consider the extent to which 

the failure scenarios identified using our method can be used to 

predict failure in the large-scale model. 

       This paper first reviews previous research on Markov chain 

models for monitoring and analysis of complex systems (Sec 

II). This is followed by an overview of the cloud system domain 

and a description of a state model for the process of requesting 

resources from the cloud (Sec. III). We then describe the 

method by which the time-inhomogenous DTMC of the cloud 

system was created (Sec. IV) and show how a critical state 

transition in this example DTMC may be perturbed to reveal 

potential failure scenarios (Sec. V). We then show how graph 

theory concepts may be used to identify the most critical state 

transitions in the sample problem (Sec. VI). This is followed by 

a discussion of the effectiveness of the set of methods we use, 

their current strengths as analytical tools, and areas where 

further work is needed (Sec. VII), and conclusions (Sec VIII). 

While the approach presented here employs minimal s-t cut set 

analysis as its basis, elsewhere we describe the use of spectral 

methods for eigendecomposition to identify critical state 

transitions [13] and algorithms for exhaustive search of a 

Markov chain transition probability matrix [12].  

II. PREVIOUS WORK 
The method discussed here should be distinguished from the 

well-known use of Discrete Time Markov chains (DTMCs) as 

tools for providing quantitative measures of system 

performance and reliability. DTMCs have been used in this 

manner in a variety of real-world domains. In manufacturing, 

DTMCs have been used for problems such as for analysis of 

dependability of manufacturing systems [14], split and merge 

production line processes and part quality defects [15]. Markov 

chain analysis has been used to model mean time to failure in 

communications networks [16], link reliability [17], as well as 

to examine fault-tolerance and performance in multi-processor 

computer architectures [18, 19], real-time process control 

systems [20], and software systems [21, 22]. In grid computing, 

DTMCs have been used to model workload for scheduling [23] 

and load balancing [24]. In most of these efforts, DTMCs have 

been used to quantitatively estimate performance or reliability. 

Perhaps most closely related to our work are [25, 26], where a 

control loop is employed to mitigate message delay in a 

communications network and a Markov chain model is used to 

represent and measure delay. Our work differs, because instead 

of measuring reliability, we use DTMCs to examine alternative 

execution paths for dynamic systems in order to identify failure 

scenarios in which performance degrades catastrophically. 

 In the nuclear power plant domain, Markov chain models 

have also been used to make quantitative estimates of 

equipment reliability [27, 28]. In addition, DTMCs have been 

used as tools for fault detection and diagnosis [1, 2, 4, 29–31] 

and for long-term condition monitoring of equipment [5, 7, 8, 

32, 33]. For example, Hidden Markov models have been used 

to represent the behavior of a target system, in which the current 

state of the system and the direction in which it is evolving are 

estimated using external signals and data [29, 31]. Again, our 

approach differs, because it is geared toward discovering 

critical state transitions in a DTMC model, which when 

perturbed, reveal execution paths that lead system failures.  

 Perturbation analysis of DTMCs has also been a topic of 

extensive theoretical [34–36] and computational study [37, 38], 

but for different purposes than we intend. For example, some 

researchers [39–41] used system performance gradients that are 

based on key decision parameters in order to perturb Markov 

models. While gradient-based approaches showed potential for 

modeling performance change, some issues involving 

computation of gradients required further research [41]. In 

addition, gradient-based approaches seem geared for system 

optimization, rather than for examining alternative execution 

paths and identifying situations in which performance degrades. 

 An important research problem in perturbing Markov 

models is managing the size of the perturbation space, i.e. the 

number of alternative execution paths to explore. This problem 

is of central concern in our work and has also been addressed 

by previous researchers. For example, performance gradients 



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

3 

were seen as having the advantage of reducing a potentially 

large perturbation space because, in some cases, only a few 

execution paths need to be observed in order to compute the 

gradient [39, 40]. In other work on performance gradients [41, 

42], problem size was reduced by grouping state transitions on 

the basis of events.  

In addition, more general solutions have been proposed for 

reducing the size of Markov models which could potentially be 

used to reduce the size of a perturbation space as well. For 

instance, in [9], the concept of lumping states with similar 

characteristics into larger aggregations was introduced. Since 

then, various lumping approaches have been explored that use 

model structure and symmetry to reduce size [43–45]. Other 

methods for reducing model size are based on group-theoretic 

concepts [18], Stochastic Activity Nets [46], stochastic colored 

nets [19], use of reward variable structures to identify 

symmetries [47], and use of eigenvector equivalence classes to 

partition a Markov state space into lumps [48]. Because these 

approaches may conflict with our goal of pursuing a more 

detailed model, we rely on different strategies. First, we rely on 

the inherent stochastic characteristics of Markov chains to 

provide a succinct representation of the system being modeled, 

as described in Section IV. More importantly, to reduce the size 

of the perturbation space, we employ graph theoretic concepts 

to identify critical state transitions, which if perturbed, reveal 

the failure scenarios of most interest.   

III. A DTMC OF A CLOUD COMPUTING SYSTEM 
In this section, we describe the cloud computing system that we 

will analyze. We provide a state model for the process of 

requesting and obtaining resources from the cloud. This process 

constitutes a request lifecycle that, as mentioned previously, is 

the focus of our analysis. The state model for the request 

lifecycle was derived by observing a large-scale discrete event 

simulation model [10] of a cloud system. This large-scale model 

can represent the actions of to 10
5
 distributed nodes and also 

serves as a proxy for a real-world system in our analysis. In the 

next section, we discuss the transformation of state model for 

the request process into a time-inhomogeneous DTMC. In 

Section V, we explain how this DTMC can be perturbed to 

identify the potential for performance degradation. 

The Discrete Time Large-Scale Simulation 
     Cloud computing systems are Internet-based distributed 

systems that provide on-demand computing resources to users 

for a fee. The large-scale discrete event simulation model of the 

cloud system [10] simulates in detail how user requests for 

computing resources are processed and how resources are 

allocated to requests. We first provide background on the cloud 

system and then describe a state model of the request lifecycle.  

     A cloud computing system consists of a cloud controller and 

a set of computing clusters which contain the computing 

resources, i.e., processors, memory, and disk space. These 

resources reside on network nodes that are interconnected 

within the cluster. The large-scale model [10] assumes a set of 

users, a single cloud controller, a set of clusters subordinate to 

the cloud controller, and nodes within the cluster that reside on 

different platforms. User, cloud controller, clusters, and nodes 

all communicate via the HTTP protocol. Each user periodically 

submits a request to the cloud controller for access to 

computing resources for a specified period of time. Each 

request is for a quantity of virtual machines, or VMs. A VM is a 

set of processers, together with memory and disk space that is 

organized as a single unit that can be accessed via a URL. From 

the user’s standpoint, a VM appears as a single functioning 

computing platform. The cloud system advertises a finite 

number of VM types, which can be requested by users. Each 

user request specifies a minimum and maximum number of each 

VM type desired. When the cloud controller receives a request, 

it passes it to its clusters, which each respond with estimates of 

their ability to satisfy the request. A cluster may respond that (a) 

it can fully satisfy the request, i.e., provide a full grant (allocate 

the maximum number for each desired VM type); (b) it can 

partially satisfy the request, i.e., provide a partial grant 

(allocate at least the minimum number of VMs for each 

requested VM types, but less than the maximum for one or 

more VM types); or (c) there are not enough resources to 

available (NERA) to meet the minimum for one or more of the 

requested VM types. The model is restricted in that a request 

must be implemented on a single cluster and cannot be 

apportioned across multiple clusters. If there are one or more 

clusters that can support a full or partial grant, the controller 

selects one cluster on which to implement the request. The 

resources for the VMs are then allocated to the user on that 

cluster, and the user is provided with the URLs to access the 

requested VMs. For this access, the user pays the cloud a fee 

per unit time the VMs are held. Of course, the resources 

necessary to provide the minimum number of requested VMs 

may sometimes be unavailable on any cluster, in which case the 

request is denied. The user may then resubmit the request later 

or give up after some number of retries. To provide the behavior 

described above, the large-scale model incorporates known 

cloud system algorithms. Probability distributions are used to 

determine request arrival times, request resource requirements, 

and the duration over which users hold VMs. The operation of 

the model is controlled by a large set of input parameters, 

including the number of users, different user types, request 

frequency, as well as the number of clusters, their constituent 

nodes, and the number and type of VMs provided. 

Overview of the State Model for the Request Lifecycle 
The state model describes the lifecycle of a single request 

and forms the basis for analysis in the DTMC. The request 

lifecycle begins at the time the request is formulated by the user 

and ends when the request is either granted or when the user 

must give up after repeated denials. Figure 1 provides an 

overview of the request lifecycle. The figure shows the major 

phases of the lifecycle as large-grained, decomposable states. 

These states are connected by arrows which indicate the 

circumstances under which a request transitions between the 



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

4 

major phases. In subsequent sections, we decompose these 

phases and provide detailed state models for each. 

 

 

 

 

 

 

 

 

 

 

 

 
                                                         

                                

 

 

 
Figure 1. Overview of major phases in the lifecycle of a request. Each 

phase is decomposed into more detailed states as described below. 

 

A request begins in an Initial State, from which it enters the 

Preparing to Submit phase. During this phase, the user 

formulates the request and makes one or more attempts to 

submit the request to the cloud controller. In the subsequent 

Initial Processing phase, the request is received by the 

controller and checked for validity. Invalid requests are returned 

to the Preparing to Submit phase for correction by the user. If 

the request is valid, the Cluster Estimating phase is entered, in 

which the cloud controller contacts the clusters in order to 

obtain estimates of the ability of each cluster to satisfy the 

request, to which clusters respond as described above. When 

either all responses have been received or the response period 

ends, the request enters the Allocating Request phase, in which 

the controller selects a cluster on which to implement the 

allocated request. If such a cluster is found, the request 

transitions to the Implementing Allocation (F/P) phase. In this 

phase, the selected cluster assigns VMs to its subordinate nodes 

and boots them, so as to be consistent with the previous 

estimate the cluster provided. Note that this phase contains the 

annotation (F/P), which indicates whether the implementation is 

for a full (F) or partial (P) grant. This differentiation indicates 

two distinct states that the request may enter (i.e., the request 

can enter a state in which it is being processed as a full grant or 

partial grant, but not both). This (F/P) notation is used to make 

the model diagrams more concise—and will be retained 

throughout the paper. If no cluster can be found that can provide 

a full or partial grant, a transition is taken back to Preparing to 

Submit phase for further consideration by the user. If the request 

enters the Implementing Allocation (F/P) phase and 

implementation operations succeed, the Request_Active (F/P) 

state is entered, at which point the process is complete. The 

Request_Active (F/P) notation again signifies the existence of 

two mutually exclusive states that indicate whether a full (F) or 

partial (P) grant has been made.  

Finally, during the Implementing Allocation (F/P) phase, 

the implementation action may fail, because the resources used 

in the cluster’s estimate have failed or have otherwise become 

unavailable. In this case, the request returns to the Allocating 

Request phase for the cloud controller to find a new cluster. In 

some cases, the implementation succeeds and the controller 

grants the request, but the message notifying the user fails, in 

which case the user is unaware of the grant. When this happens, 

the user, who is waiting for a response, eventually reaches the 

end of the wait period and issues a timeout. In the Markov 

model, a timeout event causes the state of the request to 

transition back to the Preparing to Submit phase to restart. A 

request that has been repeatedly resubmitted and failed may 

finally enter the Failed_State, indicating the user has given up. 

Both the Failed_State and the Request_Active (F/P) states are 

terminal states that signify the end of the request lifecycle. In 

the DTMC, these are the absorbing states.  

 

Decomposing the Major Phases into a State Space 
     Decomposition of the major phases in Fig. 1 yields the 

actual states of the request lifecycle of the DTMC model. In all, 

there are 39 states and 139 potential state transitions that could 

be taken. The states denote situations in which the request is 

subjected to various actions by the user, the cloud controller, or 

its subordinate clusters. The states are chosen, as much as 

possible, to denote circumstances and conditions of both normal 

and abnormal operation in order to enable potential causes of 

performance degradation to be identified. For instance, some 

states indicate that a message concerning the request is being 

transmitted between the cloud controller and its clusters. Such 

states are important in identifying causes of performance 

degradation when messages are delayed or lost.  

    The description of the entire DTMC is lengthy. Therefore, we 

focus only on the decomposition of the Cluster Estimating 

phase and those parts of the subsequent Allocating Request 

phase that are directly related. While the results of applying our 

approach for identifying critical transitions and identifying 

failure scenarios will be provided for the entire cloud model, we 

will discuss only the analysis of this phase in the body of the 

paper. Annex A contains the decomposition of the remaining 

phases, which the interested reader is invited to consult. 

Details of Cluster Estimating  
     The Cluster Estimating phase begins when the cloud 

controller contacts its clusters to request estimates of their 

ability to satisfy the user request. Each cluster then estimates its 

ability to satisfy the request. In the subsequent Allocating 

Request phase, the cloud controller reviews these estimates and 

selects a cluster to implement the request.  Here we describe 

how the Markov model represents the evolution of the state of 

the request as it is processed by the controller and its clusters. 

      In Cluster Estimating, a cluster may provide an estimate 

that it either: (a) can fully satisfy the request; (b) can partially 

Preparing To Submit

Initial Processing

Cluster Estimating

Implementing Allocation (F/P)

Request_Active (F/P)

Cluster estimates 

complete or timeout

Request found 

to be valid

Allocation

 successful

Implementation

failed (NERA) or 

timeout due to 

message failure

Request 

prepared

Request  

invalid or 

message 

failed

Allocating Request

Failed to select 

cluster (NERA)

Initial 

State Failed_State

Request 

time expires

Cluster 

selected

User timeout due 

to message failure



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

5 

satisfy the request, or (c) cannot satisfy the request, because a 

NERA situation exists. In the large-scale simulation, each 

cluster makes this determination independently. In the Markov 

model, the actions of the clusters are represented as an 

aggregated response by all the clusters to the controller. An 

aggregated response is necessary, because all cluster responses 

pertain to the state of a single request. Aggregating responses 

also preserves the stochastic characteristics of the Markov chain 

representation of a system state, as explained in Section IV.  

      Figure 2 shows the DTMC state space for the Cluster 

Estimating phase and related parts of the Allocating Request 

phase. In the large-scale simulation, a cluster begins the 

estimation process by accessing an internal database and 

retrieving records that describe utilization of its constituent 

nodes. Using these records, the cluster first determines if a 

minimum allocation can be supported. If the minimum number 

cannot be allocated for even one VM Type, the cluster returns a 

failure response to the cloud controller. In the Markov model, 

initiation of the Cluster Estimating phase is represented by a 

transition into the Allocating_Minimum state. The transfer of a 

failure response is represented by the Transferring_Failure_ 

Estimate state. The request transitions to this state from 

Allocating_Minimum when no cluster can estimate a minimum 

allocation. Otherwise, the following takes place.  

      In the large-scale simulation, if a cluster can allocate the 

minimum number for all the VM Types in a request, it then 

attempts to allocate the maximum number requested. If it 

succeeds, a full allocation estimate is recorded in its data 

structures, and the cluster returns this estimate to the cloud 

controller. In Fig. 2, these events are represented in the DTMC 

by a transition of the request state to the Allocating_Maximum 

state, followed by a transition to the Recording_Allocation 

state, and then to the Transferring_Allocation_Estimate state.  

    In the large-scale simulation, a cluster that is processing a 

request for more than one VM type may be able to allocate the 

minimum number requested for all VM types but be unable to 

allocate the maximum number. In this event, the cluster attempts 

to apportion available resources in such way as to allocate an 

equal number of VMs for each requested VM type using an 

iterative round robin procedure, such that the requirement for 

each VM type is satisfied equally to the greatest extent possible. 

Usually after this process completes, the request can no longer 

be fully satisfied, and the cluster returns an estimate to the cloud 

controller that it can only provide a partial allocation (though in 

rare cases, the cluster may succeed in restoring the full 

allocation). As Fig. 2 shows, these events are captured in the 

Markov model by a transition of the request from the 

Allocating_Maximum state to the Allocating_Partial state, 

followed by a transition to the Recording_Allocation state, and 

finally to the Transferring_Allocation_Estimate state.  

     In the large-scale simulation, a hardware or software fault 

may occur at any stage in the estimation process, which may 

cause the estimation operation to be aborted. The Markov 

model represents fault events in all the states in the Cluster 

Estimating phase with transitions to the Transferring_Failure_ 

Estimate state. For example, to represent the occurrence of a 

fault prevents that prevents access to node utilization records, a 

transition is shown from the Allocating_Minimum state to the 

Transferring_Failure_Estimate state.  

 

 

 

 

 

 

 

 

 

 
      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 2. Decomposition of state space for the Cluster Estimating 

phase. States in which the request is being processed by clusters are 

shown in green, while states being processed by the cloud controller 

are in yellow. States in which information about the request is being 

transmitted are in blue. Transitions to states in external phases are 

indicated by notes. States of the Allocating Request phase below the 

dashed horizontal line are shown that are relevant to the narrative. (See 

Annex A for further details). For each state, row numbers from Fig. 3 

are provided in brackets. In addition to the state transitions shown in 

the diagram, all states in the Cluster Estimating phase may transition 

to the Selection_Failing state in the event a timeout is issued by the 

Cloud Controller. User timeout events, which involve transition to the 

Preparing to Submit phase are omitted to simplify the discussion.  

 

     Similarly, in the large-scale simulation, the time taken to 

complete an estimate may exceed the timeout limit of the cloud 

controller, due to internal faults that cause the cluster to fail and 

be unable to respond. In this case, the controller declares a 

timeout and considers only estimates of clusters that responded. 

In the Markov model, this event is represented by a transition 

Transferring_Estimate_Request

Allocating_Minimum

Allocating_Maximum Allocating_Partial

Transferring_Failure_Estimate

Recording_Allocation

See Initial Processing phase

Transferring_Allocation_Estimate

TIMEOUT

SEND 

SUCCEEDS

Minimum number 

of VMs allocated 

for all VM types 

Failed to allocate minimum number 

of VMs for one or more VM types

Maximum number of 

VMs allocated for all 

VM types requested.

Failed to allocate 

maximum number 

of VMs for one or 

more VM types

Processing

complete 

Updates complete 

and response 

prepared

Requests 

prepared

Unable to locate records or fault

Selecting_Next_Cluster

 

SEND 

SUCCEEDS

 or TIMEOUT

Selection_Failing

Transferring_Implementation_Request(F/P)

Transferring_Failure_Response

Cluster 

selected

TIMEOUT

Unable  to 

select cluster

See Implementing Allocation phase.

C
lu

s
te

r 
E

s
ti

m
a

ti
n

g
 P

h
a

s
e

A
ll
o

c
a

ti
n

g
 

R
e

q
u

e
s

t 
P

h
a

s
e

In
it

ia
l 
P

ro
c

e
s

s
in

g
 

P
h

a
s

e

SEND SUCCEEDS

(8)

(7)

(9)

(10)

(11)

(12)

(13)

(16)

(15)(14)

(17),  (18)

Processing

Complete

SEND 

SUCCEEDS 

or TIMEOUT

TIMEOUT

FAULT

FAULT

FAULT



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

6 

from the state that the request was in when the timeout occurred 

to the Allocating Request phase, as described below. 

Conceptually, a request could be in any state in the Cluster 

Estimating phase when a timeout event occurs. A complete 

representation of all transitions that could be taken as a result of 

the timeouts would render Fig. 2 difficult to read, so we show 

only the transitions from the Transferring_Estimate_Request 

and Transferring_Allocation_Estimate states. Likewise, 

transitions representing timeouts declared by users are also 

omitted. (However, all timeout transitions are accounted for in 

the TPM for the DTMC. See Fig. 3 below). 

Cluster Selection in the Allocating Request Phase  
     In the Markov model, the request enters this phase via a 

transition from the Transferring_Allocation_Estimate state or 

from the Transferring_Failure_Estimate state. Because 

individual cluster results are aggregated, if no cluster can 

allocate the minimum number of VM types, then the state of the 

request follows a path in Fig. 2 from the Allocating_Minimum 

state to the Transferring_Failure_Estimate, and then to the 

Selection_Failing state. The Selection_Failing state represents 

a circumstance in which the cloud has determined that it cannot 

satisfy the user’s request and is preparing a message notifying 

the user of this result. The transmission of this message is 

represented in the Markov model by the Transferring_ 

Failure_Response state. (Note that the Selection_Failing state 

would also be entered if estimate request messages to all 

clusters failed, or if responses from clusters all fail.) 

    However, if one or more clusters can respond with an 

affirmative estimate that indicates a full or partial grant is 

possible, the request transitions to the Transferring_ 

Allocation_Estimate state and then to the Selecting_Next_ 

Cluster state in Fig. 2. The latter state corresponds to the 

actions of the cloud controller in selecting one of the 

responding clusters to implement the request. The controller 

then sends a message to the selected cluster telling it to 

implement the request. In the DTMC, this action is represented 

by a transition from the Selecting_Next_Cluster state to one of 

the two Transferring_Implementation_Request (F/P) states.  

   During the selection operation, the cloud controller may be 

unable to find a cluster to host the request, because either 

message transmissions failed or the implementation operation 

on the cluster failed. If no cluster can implement the request, the 

controller sends a failure message to the user. In the Markov 

model, this situation is represented by transitions from the 

Selecting_Next_Cluster state to the Selection_Failing state and 

then to Transferring_Failure_Response state. This sequence is 

also shown in Fig. 2. This path could also be taken if software 

process faults forced the cloud controller to abort the cluster 

selection process, as we describe further below. (Annex A 

contains further details of the Allocating Request and 

Implementing Allocation (F/P) phases.) 

    Finally, some states in Fig. 2 show transitions back to 

themselves. These are referred to as self transitions, and denote 

situations where processes dwell in states for a period that 

exceeds a discrete time step of a DTMC (explained below). Self 

transitions model situations where the request process remains 

in a state for a prolonged period, such as may occur when a 

delayed message transmission leads to a timeout. The DTMC 

represents all self transitions that have been observed or could 

potentially occur in the large-scale model. 

IV. TRANSFORMNG THE STATE MODEL INTO A DTMC 
     A Markov chain has the property that the probability of 

transition between any two states depends entirely on the state 

from which the transition originates and not on the previous 

history of the process. More formally, given a sequence of 

states X1, X2, …… Xn, the Markov Property states: 

 

Pr(Xn+1 = x | X0 = x0, X1 = x1, …,Xn = xn) = Pr(Xn+1 = x|Xn)     (1)              

 

The 39 states and 139 potential state transitions in the state 

model were reviewed to ensure that the design adhered to this 

principle. Where necessary, the DTMC was restructured to 

ensure that the Markov property held.  

Calculating Probabilities of Transition  
     In a Markov chain, probabilities are associated with 

transitions between states. A DTMC simulates the evolution of 

system state by state transitions that occur at discrete time steps. 

To calculate the state-to-state transition probabilities, we used 

the discrete event large-scale simulation [10]. We observed the 

operation of the large-scale model and summed transition 

frequencies over a simulated duration. The summation was done 

by determining where state transitions occur in the large-scale 

model code and inserting counters at those places
1
. State 

transition probabilities were derived as follows. Given states si, 

sj, i,j = 1…n where n=39, pij, is the probability of transitioning 

for state i to state j, written as si  sj. This probability is 

estimated by calculating the frequency of si  sj, or fij, divided 

by the sum of the frequencies of si to all states sk, or  

 

 

                                                                                              (2) 

 

 

Here i and j may be equal, to allow for a self transition, which is 

counted if the request process remained in a state longer than a 

discrete time step, which for this problem was chosen to be 100 

s. The resulting TPM is a 39 × 39 stochastic matrix, shown in 

Fig. 3, where rows stand for the state the transition originates 

from, or the from state, i, and columns represent states the 

transition goes to, or the to state, j. Each matrix element in a 

TPM contains a pij. As in any stochastic TPM, the transition 

values of all columns in a row must sum to 1.0.     

 

                                                           
1 Note that as part of this operation, transitions relating to cluster 

estimates for the same request were combined to provide an aggregate 

representation of the transition probability of a request. See Sec. III. 

 

n

k ik

ij

ij

f

f
p

1



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

  

   
 

 

The Markov chain described in this paper can be further 

classified as an absorbing chain [9]. This is because in the 

model shown in Fig. 2 and in Annex A, a request process can 

enter and remain in 36 of the 39 states temporarily, but always 

exits from these states. At some point the process enters either 

the Request_Active (F/P) or Failed absorbing state, where it is 

considered to have completed. Once the request is in an 

absorbing state, only self-transitions are possible over any 

future duration. While the summary TPM shown in Fig. 3 is 

useful for providing an overview of the dynamics of the system 

and for illustrating concepts, it requires further elaboration to 

capture time inhomogeneity. 

Stochastic Behavior and Time Inhomogeneity 
    In a large cloud system there may be many requests that are 

being processed concurrently, each of which can be in any of 

the 39 states at a given time. If these numbers are very large, it 

will be impossible to model a system state in which all requests 

are accounted for simultaneously and individually. However, as 

we will show below, the stochastic nature of a Markov chain 

makes it possible to represent the concurrent progress of 

requests through the 39 states in terms of the proportion of 

requests that are allotted to each state. In this way, it is possible 

to represent the system state as a 39-element vector in which the 

value of each vector element represents the proportion of 

requests in one of the 39 states. This simple method of 

representing the system state facilitates problem analysis. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

     In a real-world cloud system that operates over a long 

duration, as well as in the large-scale simulation of a cloud, the 

frequency of request submission may vary significantly over 

time. Availability of computing resources or network 

congestion will vary with time, and both affect the rate of 

transition between states. To capture changes in such system 

dynamics over time, different TPMs must be computed for 

different times. We therefore sum transition frequencies in the 

large-scale model by creating time-period partitions and 

compute a separate TPM for each period. 

    These time period TPMs allow representation of our model 

as an inhomogeneous Markov chain, also referred to as a piece-

wise homogenous Markov chain [49], in which there are a 

bounded number of pieces that correspond to different time 

periods. To compute the inhomogeneous Markov chain, 

frequencies from the large-scale cloud system simulation were 

summed separately for 27000 time periods of 3600 s, or one 

hour each. The 27000 time-period matrices captured cloud 

system dynamics over the 27000-hour duration. To provide a 

basis for the perturbations to be described below, the first 16 

hours of the 27000-hour duration were used. The transition 

probabilities for the first 16 hours are represented in the 

summary TPM in Fig. 3. To produce this matrix, the transition 

probabilities for the first 16 of the 27000 time period TPMs 

were weight averaged on the basis of the relative transition 

Figure 3. Summary TPM computed as a weighted average of time period TPMs. Rows indicate states from which transitions originate, while numbered 

columns indicate destination states. Shaded matrix elements with values > ε indicate transitions that were taken during the execution of the large-scale 

system simulation. Matrix elements with values of ε indicate transitions whose unperturbed transition probabilities are less than ε, where ε = 1.0e10-6 

for over 27000 hours of simulated operation of the large-scale simulation under normal conditions. Values are rounded to three significant digits 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

1 Initial 0.995 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 Thinking 0 0.962 0.038 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 Submitting 0 ε 0.873 0.122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0001

4 Transferring_User_Request 0 0 0.022 ε 0.978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 Initiating_Request_Session 0 0 ε 0 0 1-2ε 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 Preparing_Cluster_Estimate_Requests 0 0 ε 0 0 0 1-2ε 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 Transferring_Estimate_Request 0 0 ε 0 0 0 ε 0.993 0 0 0 0 0 0 0.007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 Allocating_Minimum 0 0 ε 0 0 0 0 0 0.248 0.752 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 Allocating_Maximum 0 0 ε 0 0 0 0 0 0 ε 0.464 0.536 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Transferring Failure_Estimate 0 0 ε 0 0 0 0 0 0 ε 0 0 0 0 1-2ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 Allocating Partial 0 0 ε 0 0 0 0 0 0 ε 0 1-3ε 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 Recording_Allocation 0 0 ε 0 0 0 0 0 0 ε 0 0 1-3ε 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 Transferring_Allocation_Estimate 0 0 ε 0 0 0 0 0 0 0 0 0 0 1-2ε ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 Selecting_Next_Cluster 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0.168 0 0.402 0.429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 Selection Failing 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε ε 1-3ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 Transferring_Failure_Response 0 0 0.952 0 0 0 0 0 0 0 0 0 0 ε 0 0.048 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 Transferring_Implementation_Request (F) 0 0 ε 0 0 0 0 0 0 0 0 0 0 0.012 0 0 ε 0 0.133 0 0.855 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 Transferring_Implementation_Request (P) 0 0 ε 0 0 0 0 0 0 0 0 0 0 0.012 0 0 0 ε 0 0.053 0 0.934 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 Queued_for_Implementation (F) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 ε 0 1-3ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Queued_for_Implementation (P) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 ε 0 1-3ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 Verifying_Allocation (F) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0.821 0.061 0 0 0 0 ε 0 0 0.118 0 0 0 0 0 0 0

22 Verifying_Allocation (P) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 ε 0.684 0 0 0 0 ε 0 0 0.313 0 0 0 0 0 0 0

23 Launching_Instances (F) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0.485 0 0.496 0.018 0 0 0 0 0 0 0 0 0 0 0

24 Launching_Instances (P) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0.317 0 0.587 0.096 0 0 0 0 0 0 0 0 0 0

25 Reallocating_VM_Instances (F) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 1-5ε 0 ε 0 ε 0 ε 0 0 0 0 0 0 0 0 0 0

26 Reallocating_VM_Instances (P) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 1-4ε 0 ε 0 0 ε 0 0 0 0 0 0 0 0 0 0

27 Recording_Launch (F) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ε 1-3ε 0 0 0 0 0 0 0 0 0

28 Recording_Launch (P) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ε 0 1-3ε 0 0 0 0 0 0 0 0

29 Rolling_Back_Implementation 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-2ε 0 0 0 0 0 0 0

30 Transferring_Implementation_Success (F) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ε 0 0 1-3ε 0 0 0 0 0 0

31 Transferring_Implementation_Success (P) 0 0 ε 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ε 0 0 1-3ε 0 0 0 0 0

32 Transferring_Implementation_Failure 0 0 ε 0 0 0 0 0 0 0 0 0 0 1-2ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ε 0 0 0 0 0 0 0

33 Preparing_Grant (F) 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-ε 0 0 0 0

34 Preparing_Grant (P) 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-ε 0 0 0

35 Transferring_Grant (F) 0 0 0.028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.077 0 0.895 0 0

36 Transferring_Grant (P) 0 0 0.014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.038 0 0.948 0

37 Request_Active (F) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

38 Request_Active (P) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

39 Failed_State 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

8 

frequencies in each period
2
. The summary TPM in Fig. 3 shows 

all transitions that could potentially be taken. Transitions likely 

to occur only under extreme conditions (or when the model is 

perturbed) are noted by matrix elements with values of ε, which 

indicates that their probability of occurring during a simulated 

27000-hour execution of the DTMC is ε < 1/(27000 time 

periods × 36 time steps per period) = 1.0e10
-6

. The choice of ε 

is based on the idea that the probability of an "extreme" event, 

i.e. an event that is unlikely to be observed in T time steps of the 

simulation is O (1/T). Such extreme events can be caused by 

failures, which we discuss below. 

Markov Simulation 
A well-known use of stochastic TPMs in a DTMC is to simulate 

how a dynamic system evolves over a time in discrete time 

steps, where each step represents a fixed time duration. Here, 

we provide details on this method, which we refer to as Markov 

simulation. A more formal description appears in [13]. 

   In this investigation, a discrete time step was chosen to 

represent 100 s, or h = 100. The Markov simulation was applied 

to the first 16 time periods of the total 27000 time period 

duration. Since a time period covers a duration of dperiod = 3600 

s, each of the 16 time-period TPMs represents S= dperiod /h, or 

36, steps. In Markov simulation, the state of the system is 

summarized at any time step in a 39-element state vector, which 

we denote as v. In v, each of the 39 elements represents the 

proportion of requests in one of the 39 states of the DTMC. The 

elements of the state vector vm , which represents the system 

state at time step m, are ordered so as to correspond to the 

numbered states in Fig. 3. Thus the first element in vm contains 

the proportion of tasks in the Initial state at time step m, the 

second contains the proportion of tasks in the Thinking state, 

and so forth. Using equation (3), the vector vm is multiplied by 

the TPM, Q
tp

, for the applicable time period tp to produce a 

new system state vm+1, in order to evolve the system state over a 

single discrete time step. That is, 

 

                                                                                                (3) 

                                                                                                                                                                         

where T indicates a matrix transpose. Starting with v1, which 

represents a system state with a value of 1.0 for the Initial state 

(see Fig. 1) and 0 for all others (i.e, all requests begin in the 

Initial state), equation (3) is repeated for 576 time steps 

                                                           
2
 In the summary matrix, each weight-averaged probability of each 

transition, pij, is computed as follows  

             
 nper

ij

nper

iijiijiij
pwpwpwp ....2211

 
in which each wi

l represents the weight for a row i in time period l, l 

{1.. nper}where nper is the number of time periods over which the 

summary matrix is computed. Each wi
l is computed by 

           
npertp1 nj1

tp

ijnj1

l

ij

l

i ffw  

where each f tp is the frequency of transition from state i to state j in 

time period tp and n is the dimension of the matrix. 
 

(representing 57,600 s, or the 16 simulated hours)
3
. This results 

in a system state vector, v576, in which the sum of the proportion 

of requests is distributed over the 38 states other than the Initial 

state (i.e., all states have transitioned from Initial). In an 

absorbing chain, requests eventually transition into an absorbing 

state, i.e. the Request_Active (F/P) or Failed state in this model, 

where they remain permanently. Thus, a measure of system 

performance as the simulation progresses is the proportion of 

requests that enter the Request_Active (F/P) states, which 

represents requests that have received full or partial grants. On 

the other hand, a performance collapse may be simulated when 

a large proportion of requests enter the Failed state, or when 

they are otherwise unable to enter Request_Active (F/P).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4a. Comparison of total grants for Markov and large-scale 

simulations over first 16 time periods of the simulated duration, where 

each time period consisted of 36 time steps of 100 s each.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4b. Comparison of full and partial grants for Markov and large 

–scale simulations over first 16 time periods of the simulated duration. 

 

Fig. 4 compares the results of applying Markov simulation to 

the results produced by the large-scale simulation over the first 

16 time periods. Figure 4a shows the growth of total grants (full 

                                                           
3 Note that each repetition of equation (3) is an independent 

operation that is applied to a proportion (fraction) of the total number 

of requests in a state. Repeated application of (3) results in distribution 

of this proportion across other states as defined by the state transitions 

in the TPM.  

(Qtp)T * vm= vm+1, where tp = integral value (m/S) + 1 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 P

ro
p

o
rt

io
n

 o
f 

To
ta

l G
ra

n
ts

Time Step

Total Grants  (Markov simulation)

Total Grants  (Large-scale simulation)

0

0.1

0.2

0.3

0.4

0.5

Cu
m

ul
at

iv
e 

Pr
op

or
ti

on
 o

f 
Fu

ll 
an

d 
Pa

rt
ia

l G
ra

nt
s

Time Step

Full Grant  (Markov simulation)
Full Grant  (Large-scale simulation)
Partial Grant (Markov simulation)
Partial Grant (Large-scale simulation)



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

9 

and partial) in both simulations, while Fig. 4b shows the growth 

full and partial grants separately. The two figures show that the 

Markov simulation more closely approximates the large-scale 

simulation with respect to total grants (Fig. 4a). However, there 

is a greater discrepancy when full and partial grants are 

considered separately (Fig. 4b). We will return to this issue in 

Section V, when discussing the results of the perturbations. We 

also note that the Markov simulation runs faster. The results 

shown in Fig. 4 were produced by a single execution of the 

large-scale simulation [10] which required almost 3 minutes, 

while the Markov simulation took about 4 s. Thus, the Markov 

simulation was 25 times faster than the large-scale simulation. 

V. PERTURBING STATE TRANSITIONS TO MEASURE 

THE EFFECTS OF FAILURE  
In this section, we show that the perturbation of a related set of 

state transitions coupled with Markov simulation can be used to 

identify failure scenarios that reveal potential catastrophic 

performance degradations. In so doing, we assess the extent to 

which these techniques can be used to make predictions. In the 

next section, we describe a method for using graph theory 

concepts to identify all sets of critical state transitions in the 

directed graph of a Markov chain that can be perturbed to 

identify failure scenarios. 

   Consider a situation where the clusters are unable to make 

estimates of the minimum VMs to be allocated. This could 

occur, for example, because resource databases on the clusters 

have become inaccessible due to a software or hardware fault. 

In the large-scale simulation, this failure would then lead the 

clusters to abort the estimation computation and return failure 

estimates to the cloud controller. In Fig. 2 (see Sec. III), this 

failure scenario corresponds to a reduced ability to transition 

from the state Allocating_Minimum to the state Allocating_ 

Maximum. We write this transition, Allocating_Minimum  

Allocating_Maximum, for notational convenience. In the TPM 

shown in Fig. 3, the perturbation of Allocating_Minimum  

Allocating_Maximum is modeled by lowering the probability of 

transition from the Allocating_Minimum state to the 

Allocating_Maximum state, i.e., lowering the value of column 9 

in row 8, or TPM element {8, 9}. Since transition probabilities 

in a row of a stochastic matrix must sum to 1, the transition 

probabilities of one or more columns other than column 9 in 

row 8 must be raised by a corresponding amount. Because error 

handling procedures would require the cluster to return failure 

estimates in this scenario, the obvious choice would be to raise 

the transition probability of column 10, Allocating_Minimum  

Transferring_Failure_Estimate, or TPM element {8, 10}. Thus, 

a perturbation applied to all time-period TPMs, in which the 

related TPM element {8, 9} is systematically lowered by 

increments while TPM element {8, 10} is raised, serves to 

model how the increasing incidence of internal database failure 

affects the proportion of requests that receive either full or 

partial grants. Fig. 5 shows the TPM elements that are affected 

by this perturbation.  

 

 

 

 
 

Figure 5. TPM elements from Fig. 3 that were raised and lowered as a 

result of perturbation shown in Fig. 6a.  

 

    Fig. 6a shows a Markov simulation in which this perturbation 

is applied to the TPM set for the first 16 hours (16 time periods) 

of the 27000-hour simulated duration described in Section IV. 

Fig. 6a shows the predicted effect on the total proportion of 

requests that received grants (both full and partial) as the 

probability of transition of Allocating_Minimum  

Transferring_Failure_Estimate (the value of TPM element {8, 

10}) is raised in increments of 0.01, while the transition 

probability of Allocating_Minimum  Allocating_Maximum is 

lowered (the value in TPM element {8, 9} is decreased). In Fig. 

6a, the horizontal axis shows the increase in the transition 

probability of Allocating_Minimum  Transferring_Failure_ 

Estimate. The left vertical axis shows units for the proportion of 

requests that were granted, while the right vertical axis shows 

units by which the transition probability of 

Allocating_Minimum  Allocating_Maximum is reduced.  
       
 

 

 

 

 

                 

                

 

 

 

 

 

 

 

 

 

 
 

Figure 6a. Decline in total requests granted due to cluster allocation 

estimation failure (a) as estimated by perturbing the DTMC and using 

Markov simulation; and (b) as actually computed in the discrete time 

large-scale simulation. The DTMC is perturbed to raise the probability 

of transition for Allocating_Minimum  Transferring_Failure_ 

Estimate (TPM element {8, 10} and lower the probability of transition 

for Allocating_Minimum  Allocating_Maximum (TPM elements {8, 

9}. The increase of this probability of transition for Allocating_ 

Minimum  Transferring_Failure_Estimate is indicated by the 

horizontal axis, while the left vertical axis provides unit values used to 

describe the proportion of requests granted. The right vertical axis 

provides units for the decrease in probability of the state transition 

Allocating_Minimum  Allocating_Maximum. 

8 9 10

8 Allocating_Minimum 0 0.248 0.752

9 Allocating_Maximum 0 0 ε

10 Transferring Failure_Estimate 0 0 ε

0

0.05

0.1

0.15

0.2

0.25

0.3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e

cr
e

a
se

 in
  P

ro
b

a
b

il
it

y 
o

f 
Tr

a
n

si
ti

o
n

P
ro

p
o

rt
io

n
 o

f 
R

e
q

u
e

st
s 

G
ra

n
te

d

Increase in Probability of Transition from Allocating_Minimum 
state (8)  to Transferring_Failure_Estimate state (10)

(a) Total Grants (Markov Simulation)

(b) Total Grants (Large Scale Simulation)

Decrease in probabilty of transition 
from Allocating_Minimum state (8)
to Allocating_Maximum state (9)



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

10 

   To test whether the failure scenario identified using the 

DTMC actually caused a catastrophic performance collapse in 

the discrete time large-scale simulation, the failure of clusters to 

make minimum allocation estimates was introduced into the 

large-scale simulation. The proportion of requests granted was 

recorded as the probability of allocation estimation failure was 

increased from 0 (no occurrence of failure) to 1 (all attempts to 

make minimum allocation estimates by clusters failed). Fig. 6a 

shows the result of simulating this failure in the large-scale 

simulation for comparison. To equate the Markov and large-

scale simulations, the change in transition probabilities was 

recorded in the large-scale simulation as the incidence of 

allocation estimation failure in clusters increased
4
.  

    Close examination of Fig. 6a shows that the Markov 

simulation could be used to accurately predict that total grants 

will fall to 0 in the large-scale simulation as the incidence of 

failure rises. In Fig. 6a, the perturbation of the Markov chain 

also estimates that the drastic decline in total grants will not 

occur until the incidence of failure reaches a fairly high rate. 

This information might be used to an analyst to judge that the 

threshold beyond which performance collapses occurs when the 

probability of transition for Allocating_Minimum  

Transferring_Failure_Estimate exceeds 0.80 (on the horizontal 

axis). In this way, the Markov chain could be used to make a 

quantitative estimate of system behavior and to identify a 

threshold failure rate, beyond which system performance is 

likely to collapse.    

    However, in Fig. 6b, we also see that Markov chain 

perturbation can be less accurate in modeling the impact of the 

perturbation on full grants and partial grants separately. The 

figure shows that the Markov chain perturbation underestimates 

the rate of full grants and overestimates the rate of partial grants 

in the large-scale simulation in response to failure. It is likely 

that the inaccuracy stems from the fact that the perturbation 

approach described here currently is more suited to predicting 

the impact of changes to localized parts of the Markov chain, 

which directly interact with each other. The approach is less 

able to predict the impact of a perturbation on state transitions 

that are further apart in the graph of the DTMC. We will return 

to the discussion of this issue. 

     Keeping this caveat in mind, the example shows that 

perturbation of a large, detailed Markov chain can be used to 

determine if failures to specific system components can lead to 

severe performance degradations of a system and to estimate 

the quantitative extent and rate of decline. Moreover, the 

Markov simulation executes faster than the large-scale 

simulation. In the former, each perturbation level took on the 

average of 1.65 s, while the latter required an average of 49.7 s. 

In [11], we found that Markov simulation was generally two-

orders of magnitude faster than large-scale simulation in 

perturbing a similar problem.  

                                                           
4 To record transition probabilities in the large-scale simulation, counters 

were inserted as described in Sec. IV. The recorded transition probabilities are 

dependent on, but distinct from, the rate at which data structure failures occur.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

Figure 6b. Decline in full and partial grants, due to cluster allocation 

estimation failure (a) as estimated by perturbing the DTMC and using 

Markov simulation; and (b) as computed in the discrete time large-

scale simulation. The DTMC is perturbed to raise the probability of 

transition for Allocating_Minimum  Transferring_Failure_Estimate 

(TPM element {8, 10} and lower the probability of transition for 

Allocating_Minimum  Allocating_Maximum (TPM elements {8, 9}. 

VI. USING MINIMAL S-T CUT SET ANALYSIS TO 

REDUCE THE PERTURBATION SPACE  
     The previous example illustrated how a DTMC model of a 

dynamic system can be perturbed to identify failure scenarios 

and predict resulting performance changes. However, the 

example involved perturbation of only one possible 

combination of state transitions among many. In the DTMC 

discussed in this paper, there are potentially many other such 

combinations that may have to be examined in order to find all 

critical state transitions where perturbation leads to drastic 

performance declines. Of these, many combinations will consist 

of transitions that originate from different states (have different 

from states), and thus would involve perturbation of more than 

one row of the TPM in Fig. 3. Since it is highly unlikely that all 

critical transitions could be found by visual inspection of large 

Markov chain, other means are necessary. 

    Consider a complete examination of all rows of the TPM in 

Fig. 3, where for each row we perturb all possible combinations 

in which the transition probability of one column is raised while 

the transition probabilities of one or more other non-zero 

columns in the same row is lowered to 0 (as was done in the 

preceding example in Fig. 6a). If the Initial state and the three 

absorbing states are excluded, there are n−4 possible columns 

from which increase and decrease columns are to be selected, 

where n = 39. For one column of increase and one column of 

decrease, the number of feasible perturbations (corresponding 

to feasible scenarios) is 115 (depending on assumptions made 

as to which columns can be perturbed). However, if we consider 

perturbing different combinations of rows together in order to 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

p
o

rt
io

n
 o

f 
R

eq
u

es
ts

 G
ra

n
te

d

Increase in Probability of Transition from Allocating_Minimum 
state (8)  to Transferring_Failure_Estimate state (10)

(a) Full Grants (Markov Simulation)

(a) Partial Grants (Markov Simulation)

(b) Full Grants (Large Scale Simulation)

(b) Partial Grants (Large Scale Simulation)



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

11 

find combinations of state transitions in different rows which 

together are critical, the figure increases by a factor of        

 

                                                        

 

where n is the dimension of the matrix and r is the number of 

rows to be considered in combination. Using this formula, there 

would be 595 combinations of two rows to examine. If we 

consider that each row has approximately 3 sets of perturbations 

to examine (integral value (115/35) = 3), there would be 9 

combinations of perturbations to examine for each pair of rows, 

which would require an estimated 5355 perturbations of the 

kind described in the example in Section V. (If we consider 

three rows in combination, approximately 58,905 additional 

perturbations would need to be carried out.) Clearly, a brute 

force search to find all critical state transitions is likely to be 

infeasible for a large problem. Yet in a large TPM, it is 

necessary to examine many rows to find those individual state 

transitions, and combinations of transitions which can be 

perturbed to reveal performance degradations.  

     Therefore in this section, we introduce an approach in which 

graph theory concepts are used to avoid exhaustive search and 

enable tractable perturbation of a large DTMC. Specifically, we 

use minimal s-t cut set analysis to identify critical state 

transitions which can be directly perturbed, as was done in the 

preceding example, to reveal the potential for performance 

collapses. Minimal s-t cut set analysis is a technique that can be 

used to find all combinations of state transitions, which if 

removed from a directed graph of a Markov chain, cut all paths 

from the Initial state to a desired absorbing state—in this case, 

both the Request_Active (F) state for full grants or the Request_ 

Active (P) state for partial grants, denoted as Request_Active 

(F/P). In what follows, we first review graph theory concepts 

necessary to the understanding of minimal s-t cut set analysis 

and then show how this technique can be used to identify sets of 

critical state transitions that most affect system performance. 

Through examples, we show that systematic perturbation of 

these sets of transitions can be used to identify failure scenarios, 

in which the rate of performance decline can be estimated as the 

occurrence of failure increases. 

Definitions 
In graph theory, a graph G (V, E) consists of a set of vertices 

V connected by edges from the set E. A directed graph is a 

graph in which edges can be traversed in only one direction. A 

Markov chain is a directed graph, in which vertices correspond 

to states and directed edges correspond to state transitions. A 

directed path through this graph is a sequence of state 

transitions from one state to another. In this problem, the 

directed paths of most interest are non-cyclic paths that lead 

from the Initial state to one of the two desired absorbing states, 

denoted Request_Active (F/P).  A set of one or more edges, 

which if removed, disconnects all paths between two vertices s 

and t is referred to as an s-t cut set [50]. An s-t cut set is a 

minimal s-t cut set if removal of any edge from the cut set 

reconnects s and t. By finding minimal s-t cut sets consisting of 

state transitions that disconnect the Initial and Request_Active 

(F/P) states, it is possible to know where reducing the related 

transition probabilities to 0 can halt the progress of requests to 

completion. 

Fig. 7 shows an example of a minimal s-t cut set from the 

Allocating Request phase (see Fig. 2), which is directly related 

to the perturbation discussed in the preceding section (see Fig. 

6a). This cut set consists of a single state transition, Allocating_ 

Minimum  Allocating_Maximum), or TPM element {8, 9}. 

Disconnecting the directed graph of the Markov chain at this 

point prevents the progression of requests to either of the two 

absorbing states, Request_Active (F/P), as demonstrated by the 

perturbations shown in Fig. 6a in which the probability of this 

transition is reduced to 0.  

 

 

 

 

 

 

 

 

 

 
Figure 7. A minimal s-t cut set consisting of a single state transition 

from Allocating_Minimum  Allocating_Maximum from Fig. 2 (In 

the TPM in Fig. 3, this cut set involves TPM element {8, 9}). For each 

state, related row numbers in Fig. 3 are provided. 

Identifying Critical State Transitions Using Minimal s-t 

Cut Set Analysis 
    A number of algorithms have been developed for 

enumerating all minimal s-t cut sets between two vertices in a 

directed graph [51–53]. All require considerable computational 

effort for large graphs, and we will return to the question of 

scalability of various approaches for cut set generation in the 

discussion section (see Sec. VII). However, for purposes of 

illustrating the use of minimal s-t cut analysis on the problem 

described in this paper, we implemented the algorithm of [51] 

to find all cut sets in the directed graph of the Markov chain 

presented in this paper. This algorithm has been proven to be 

able to find all minimal s-t cut sets between two vertices s and t 

in directed graph. The algorithm was applied to a directed graph 

of our Markov chain, in which the Initial State was designated 

as vertex s and the absorbing states Request_Active (F/P) (38) 

and (39) were together designated as vertex t, so that a cut set 

included state transitions that cut all paths to both states. All 

potential state transitions that could be taken were included in 

this directed graph. The algorithm generated 159 minimal s-t 

cut sets, which ranged in size from one state transition to 8. A 

reasonable assumption in analyzing this set of transitions is that 

in this domain, as in most large domains, the most critical cut 

sets will consist of a small number of transitions [54], since 

small combinations represent events that are more likely to 

r

n 4

Allocating_Minimum

Allocating_Maximum

Transferring_Failure_Estimate

Minimum number 

of VMs allocated 

for all VM types 

Unable to locate records or fault

(8)

(9)

(10)

Minimal s-t cut set
 



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

12 

occur and impact the system being modeled. Therefore, we used 

the implemented algorithm of [51] to generate minimal s-t cut 

sets and then sorted them on the basis of the number of 

transitions they contain, in ascending order.  

    Tables 1 and 2 show the 33 minimal s-t cut sets generated 

using the implemented algorithm of [51] which consist of one 

or two state transitions. Analysis of cut sets with three 

transitions is omitted for lack of space. Table 1 contains 10 cut 

sets having one transition. Table 2 contains 23 cut sets that have 

two transitions. In both tables, the total probability of transition 

of cut set members is used as a secondary ordering criterion
5
. 

Each cut set entry lists the state transitions in the cut set using 

the state numbers given in Fig. 3 for identification. Each cut set 

entry lists the figures in which the transitions in the cut set 

appear. Table 2 also shows the number of states from which the 

transitions in the set originate, i.e., the number of from states. 

 
Table 1. Ranking of minimal s-t cut sets of the directed graph of the 

Markov that consist of one transition. For each cut set entry, member 

state transitions are listed as TPM elements from Fig. 3, together with 

the total probability of transition, and the identifying number of the 

figures in which the transitions in the cut set appear. 

 

 

 

 

 

 

 

 

 

 

 

 

   Each cut set in these tables can be perturbed in the same 

manner as the example discussed in Section V and shown in 

Fig. 6a, with the exception that in many cut sets, multiple 

transitions are involved. By reducing the probability of 

transition of all state transition in any multiple-transition cut set 

to 0, the flow of requests to the absorbing states Request_Active 

(F/P) is also reduced to 0. Thus, each minimal s-t cut set 

identifies a set of critical state transitions. As in the example in 

Fig. 6a, perturbation of all transitions can be used to estimate 

likely rates of performance degradation and to identify 

performance thresholds. Below, we will provide two examples. 

    It is possible to further narrow down which cut sets in Tables 

1 and 2 are of most interest by leveraging domain expertise 

about whether the transitions in the cut set concern states in 

which the request is being processed by the cloud controller, 

clusters, or network. The single-transition cut sets of Table 1 

                                                           
5 Note that the total probability of transition for all state transitions in a 

cut set may exceed 1. This is because a minimal s-t cut set may consist of state 

transitions involving multiple states, rather than a single state. In a stochastic 

matrix, only the transition probabilities of state transitions from a single state 

must sum to 1. 

occur in the Preparing to Submit, Initial Processing, and 

Cluster Estimating phases. Cut set #1-1 consists of the 

transition from the Initial state. Cutting this transition has 

obvious consequences. Cut sets #1-2 and #1-3 consist of state 

transitions from the Preparing to Submit phase that relate to 

possible human error (see Annex A). Cut sets #1-5, #1-7, and 

#1-8 concern transitions that relate to network transmission, and 

so may be of value in analysis of the effect of network failures. 

Cut sets #1-6 and #1-9 describe component failures in the 

Initial Processing phase. Cut set #1-4 can be used to model the 

effect of faults in cluster components that lead to failure to 

allocate the minimum numbers of VMs for requests during the 

Cluster Estimating phase. This cut set is shown in Fig. 7. The 

result of perturbing the single state transition in the cut set was 

discussed in Section IV and is shown in Fig. 6a. Cut set #1-10 is 

similar to cut set #1-4 because it can be used to model the 

effects of not being able to update the cluster’s internal 

databases and complete the estimation operation (see Fig. 2).   

 
Table 2. Ranking of minimal s-t cut sets that consist of two transitions. 

For each cut set entry, member state transitions are listed as TPM 

elements from Fig. 3, together with the number of from states the 

transitions originate from, the total probability of member transitions, 

and the identifying number for the figure in which the transitions in 

the cut set appear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

    The cut sets in Table 2 each have two state transitions. Cut 

set #2-1 consists of the two transitions from Selecting_Next_ 

Cluster to the states Transferring_Implementation_Request 

(F/P) (TPM elements {14, 17} {14, 18}). These transitions are 

related to the Allocating Request phase and were discussed in 

Set of member Total Figure

transitions from Fig. 3 Probabilty Reference

1-1  {1, 2} 0.001 A.1

1-2  {2, 3} 0.025 A.1

1-3  {3, 4} 0.124 A.1

1-4  {8, 9} 0.264 2

1-5  {4, 5} 0.978 A.2

1-6  {6, 7} 0.978 A.2

1-7  {7, 8} 0.990 2

1-8  {13, 14} 0.991 2, A.2

1-9  {5, 6} 0.995 A.2

1-10  {12, 13} 1.000 2

Set of member Number of Total Figure

transitions from Fig. 3 From States Probabilty Reference

2-1  {14, 17}  {14, 18} 1 0.895 2, A.3

2-2  {9, 11}  {9, 12} 1 1.000 2

2-3  {9, 12}  {11, 12} 2 1.395 2

2-4  {23, 27}  {36, 38} 2 1.438 A.4

2-5  {23, 27}  {31, 34} 2 1.499 A.4

2-6  {23, 27}  {28, 31} 2 1.507 A.4

2-7  {23, 27}  {34, 36} 2 1.507 A.4

2-8  {35, 37}  {36, 38} 2 1.861 A.4

2-9  {31, 34}  {35, 37} 2 1.922 A.4

2-10  {30, 33}  {36, 38} 2 1.924 A.4

2-11  {28, 31}  {35, 37} 2 1.930 A.4

2-12  {34, 36}  {35, 37} 2 1.930 A.4

2-13  {27, 30}  {36, 38} 2 1.931 A.4

2-14  {33, 35}  {36, 38} 2 1.931 A.4

2-15  {30, 33}  {31, 34} 2 1.985 A.4

2-16  {27, 30}  {31, 34} 2 1.993 A.4

2-17  {31, 34}  {33, 35} 2 1.993 A.4

2-18  {28, 31}  {30, 33} 2 1.993 A.4

2-19  {30, 33}  {34, 36} 2 1.993 A.4

2-20  {27, 30}  {28, 31} 2 2.000 A.4

2-21  {27, 30}  {34, 36} 2 2.000 A.4

2-22  {28, 31}  {33, 35} 2 2.000 A.4

2-23  {33, 35}  {34, 36} 2 2.000 A.4



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

13 

Section III. Cut sets #2-2 and #2-3 consist of two transitions 

from the Cluster Estimating phase, which was also discussed in 

Section III. The remainder, cut sets, #2-4 through #2-23, occur 

in the Allocating Request and Implementing Allocation (F/P) 

phases (see Annex A for the latter). For all two-transition cut 

sets, system performance is driven toward 0, by reducing the 

probabilities of transition for both state transitions in the cut set.  

  For the two-transition cut sets in Table 2, we can also use 

information about relationships between transitions in the cut 

set and the location of the cut set in the Markov chain graph to 

determine which cut sets might be of most interest to examine. 

Of special interest are two-transition cut sets in which both 

transitions originate from the same state, i.e., have the same 

from state. An example of this is cut set #2-1, in which both 

transitions originate from the Selecting_Next_Cluster state. 

Another example is cut set #2-2, which consists of the 

transitions Allocating_Maximum  Allocating_Partial {9, 11} 

and Allocating_Maximum  Recording_Allocation {9, 12}. In 

cut set #2-2, both transitions also originate from the same state, 

Allocating_Maximum. Cut sets #2-1 and #2-2 could used to 

model the effects of component failures that can be related to 

their common from states.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Minimal s-t cut set #2-1, which consists of the two state 

transitions, Selecting_Next_Cluster  Transferring_Implementation_ 

Request (F/P), from Fig. 2. For each state, related row numbers in Fig. 

3 are provided. (In the TPM in Fig. 3, these are TPM elements {14, 

17} and {14, 18}).  Note that the transition arrow between these two 

states denotes both transitions from Transferring_Implementation_ 

Request (F/P) using the compacted representation used in this paper.  

 

    As an example of a failure scenario that involves a two-

transition cut set, consider cut set 2-1, which is shown in Fig. 8. 

This cut set could be used to model the effects of faults, which 

impair the cloud controllers’ ability to send messages that 

instruct a cluster to implement a request (see Sec. III and Annex 

A(3) for details on the Allocating Request phase). Such a fault 

could be caused by a virus or other malfunction, which has 

corrupted internal databases that contain cluster addresses. 

Because of this fault, the controller may be able to select a 

cluster, but is unable to send the implementation request 

message and so must abort the selection process. In the Markov 

chain, this failure scenario corresponds to a reduced ability to 

transition from the Selecting_Next_Cluster state to either the 

Transferring_Implementation_Request (F) or to the 

Transferring_Implementation_Request (P) state, which are the 

two state transitions in cut set 2-1.  

     In the TPM shown in Fig. 3, the perturbation of Selecting_ 

Next_Cluster  Transferring_Implementation_Request (F/P) is 

modeled by lowering the probability of transition from the 

Selecting_Next_Cluster state to the Transferring_ 

Implementation_Request (F/P) states, i.e., lowering the values 

in columns 17 and 18 in row 14, or TPM elements {14, 17} and 

{14, 18}. In compensation, we choose to raise the transition 

probability of column 15, Selecting_Next_Cluster  Selection_ 

Failing, or TPM element {14, 15}. This choice is logical since 

in the large-scale simulation, error handling procedures require 

the cloud controller to return a failure (NERA) response to the 

user when cluster selection fails. Thus, a perturbation applied to 

all time-period TPMs, in which the related TPM elements {14, 

17} and {14, 18} are systematically lowered by increments 

while TPM element {14, 15} is raised, serves to model how the 

increasing incidence of internal database failure affects the 

proportion of requests that receive either full or partial grants. 

Figure 9 shows the TPM elements that are affected by the 

perturbation of the transitions shown in the cut set in Fig. 8.  

 

 

 

 

 

 

 

 
Figure 9. TPM elements from Fig. 3 that were raised and lowered as a 

result of perturbation shown in Fig. 10a 

 

    Fig. 10a shows the impact of this perturbation on total 

requests granted. As in the previous example in Section V, this 

perturbation was carried out using Markov simulation over the 

initial 16 hours (16 time periods) of the 27000-hour simulated 

duration. To equate the Markov and discrete-time large-scale 

simulations as before, the equivalent message initiation failure 

was also introduced into the large-scale simulation. In the latter, 

the proportion of requests granted was recorded as the 

probability of failure was increased from 0 (no occurrence of 

failure) to 1 (all attempts to by the cloud controller to send 

implementation messages to clusters fail). Similarly, the change 

in probabilities of the related transitions identified above was 

also recorded in the large-scale simulation as the incidence of 

introduced failure was increased. Fig. 10a compares the decline 

in requests granted that occurred in the Markov and large-scale 

simulation. The horizontal axis shows the increase in transition 

probability of Selecting_Next_Cluster  Selection_Failing. 

The left vertical axis shows units for proportion of requests 

granted, while the right vertical axis shows units for the 

14 15 16 17 18

14 Selecting_Next_Cluster ε 0.168 0.000 0.402 0.429

15 Selection_Failing ε ε 1-3ε 0.000 0.000

16 Tranferring_Failure_Response ε 0.000 0.048 0.000 0.000

17 Transferring_Implementation_Request (F) 0.012 0.000 0.000 ε 0.000

18 Transferring_Implementation_Request (P) 0.012 0.000 0.000 0.000 ε

Transferring_Implementation_Request(F/P)

Verifying_Allocation (F/P)

SEND 

SUCCEEDS

(14)

(17), (18)

A
ll
o

c
a

ti
n

g
 

R
e

q
u

e
s

t 
P

h
a

s
e

Im
p

le
m

e
n

ti
n

g
 

A
ll
o

c
a

ti
o

n
 P

h
a

s
e

(F F; 

P  P)

Selecting_Next_Cluster

(21), (22)

 

Cluster list empty, 

or unable to 

select cluster
(15)

Selection_Failing



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

14 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ec

re
as

e 
in

  P
ro

b
ab

ili
ti

es
 o

f 
Tr

an
si

ti
o

n

P
ro

p
o

rt
io

n
 o

f 
R

eq
u

es
ts

 G
ra

n
te

d

Increase in Probability of Transition from Selecting 
Next Cluster state (14) to Selection_Failing state (15)

(a) Total Grants (Markov Simulation)

(b) Total Grants (Large Scale Simulation)

Decrease in probability of transition from
Selecting_Next_Cluster state (14) to Transferring_
Implementation_Request (F) state (17)

Decrease transition probabilty from Selecting_ 
Next_Cluster state (14) to Transferring_
Implementation_Request (P) state (18)

decrease in the transition probability of Selecting_Next_Cluster 

 Transferring_Implementation_Request (F/P).  

 

  

 

 

 

 

 

                                                               

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10a. Decline in total requests granted due to cloud controller 

database failure (a) as estimated by perturbing the DTMC and using 

Markov simulation; and (b) as actually computed in the discrete time 

large-scale simulation. The DTMC was perturbed to raise the 

probability of transition for Selecting_Next_Cluster  Selection_ 

Failing (TPM element {14, 15}) and lower the transition probabilities 

of Selecting_Next_Cluster  Transferring_Implementation_Request 

(F/P) (TPM elements {14, 17} and {14, 18}). Both transitions are 

lowered at the same rate. The increase of the probability of transition 

for Selecting_Next_Cluster  Selection_Failing is indicated by the 

horizontal axis. The left vertical axis provides unit values for the 

proportion of requests granted. The right vertical axis provides units 

for the decrease in transition probability of Selecting_Next_Cluster  

Transferring_Implementation_Request (F/P) 

 

     As in Fig. 6a, Fig. 10a shows that the perturbation of the 

Markov chain could be used to predict that total grants will fall 

to 0 as the incidence of failure rises. As before, the perturbation 

of the DTMC also roughly estimates the rate of decline. The 

figure shows that a drastic decline in total grants will not occur 

until the incidence of failure causes the transition probability of 

Selecting_Next_Cluster  Selection_Failing to exceed a 

threshold of about 0.80 (on the horizontal axis). However, as is 

obvious in Fig. 10a, the perturbation of the DTMC 

underestimates the resilience of the large-scale simulation. In 

the latter, the rate of total grants is slightly higher and the 

collapse in system performance is postponed until the incidence 

of failure is greater than in the Markov simulation. Yet, the 

overall shape of the two curves is similar, as it was in the 

previous example in Section V.  

    In Fig. 10b, we again see that Markov chain perturbation can 

be less accurate in modeling the impact of the perturbation on 

full grants and partial grants separately. In this case, the 

inaccuracy stems from the fact that in the large-scale simulation, 

the probability of transition for Selecting_Next_Cluster  

Transferring_Implementation_Request (F) and Selecting_ 

Next_Cluster  Transferring_Implementation_Request (P) 

decline at different rates in response to increased incidence of 

failure. This difference in rate of decline cannot be predicted by 

the perturbation described in Fig. 9. Instead, the Markov chain 

perturbation must be iterated to model the effects of different 

combinations of relative rates of decline for these two 

transitions. Figure 10b, shows three such combinations: one is 

accurate; two are not. As in the first example, it is likely that the 

inaccuracy in Fig. 10b stems from the fact that the perturbation 

approach described here currently can only be used to predict 

the impact of changes to localized parts of the Markov chain, 

which directly interact with each other. In the large-scale 

simulation, the simulated failure prevents implementation of 

allocations on clusters which in turn results in lower utilization 

of cluster resources. Although the overall grant rate declines as 

a result, the greater availability of resources means that when 

grants can be made, full grants are more likely. Modeling this 

type of non-local interaction in a DTMC may require 

knowledge of dependencies between state transitions that are 

not members of the same cut set and that involve states that are 

distant from each other in the DTMC graph. Our current 

perturbation approach cannot do this, and future work is 

necessary to determine if the Markov chain paradigm can be 

extended to overcome this limitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 10b. Decline in full and partial requests grants, due to cloud 

controller database failure as (a) as estimated by perturbing the DTMC 

and using Markov simulation; and (b) as computed in the discrete time 

large-scale simulation. The DTMC was perturbed as described for Fig. 

10a. Three combinations of relative rates of decline are shown for 

TPM elements {14, 17} and {14, 18}: (a) 0.25 and 0.75; (b) 0.5 and 

0.5; and (c) 0.75 and 0.25.   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o

rt
io

n
 o

f 
R

e
q

u
e

st
s 

G
ra

n
te

d

Increase in Probability of Transition from Selecting 
Next_Cluster state (14)  to Selection_Failing state (15)

Full Grant (Large Scale Simulation) Partial Grant (Large Scale Simulation)
(a) Full Grant (Markov Simulation) (a) Partial Grant (Markov Simulation)
(b) Full Grant (Markov Simulation) (b) Partial Grant (Markov Simulation)
(c) Full Grant (Markov Simulation) (c) Partial Grant (Markov Simulation)



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

15 

    Cut sets #2-4 through #2-23 from Table 2 contain pairs of 

state transitions that originate in different states. Using Fig. 2, it 

is possible to classify these cut sets on the basis of whether their 

states relate to network transmission or relate to functions of 

either the cloud controller or clusters. Thus, cut sets #2-8, #2-9, 

and #2-10 pertain to states that may be used to model network 

failure. Cut set #2-3 concerns states that can be used to describe 

component failure within clusters during the Cluster Estimating 

phase. Cut sets #2-6 and #2-20 can be used to describe possible 

component failures during Implementing Allocation (F/P) 

phase. Cut sets #2-3, #2-6, and #2-20 pertain to states which all 

relate to processes that are either within the clusters (#2-3) or 

within the cloud controller (#2-6, and #2-20), but not within 

both (see Annex A). Cut sets #2-7, #2-21, and #2-22 also relate 

to the Implementing Allocation (F/P) phase, but in each, one 

member state transition is related to the cloud controller while 

the other is related to the clusters. The analyst is left to choose 

which would be of most importance to examine.  

    The perturbation of the transitions in cut sets #2-4 through 

#2-23 is accomplished in the same manner as described  above, 

except that transition probabilities are reduced to 0 for two state 

transitions that have different from states. As an example, we 

focus on the perturbation of cut set #2-3, which consists of two 

state transitions from Fig. 2. These transitions are Allocating_ 

Maximum  Recording_Allocation (TPM element {9, 12} in 

Fig. 3) and Allocating_Partial  Recording_Allocation (TPM 

element {11, 12} in Fig. 3). Cut set #2-3 is shown in Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. Minimal s-t cut set #2-3, consisting of two state transitions 

(denoted by jagged red lines): Allocating_Maximum  Recording_ 

Allocation (TPM element {9, 12} in Fig. 3) and Allocating_Partial  

Recording_Allocation (TPM element {11, 12}). For each state, related 

row numbers for the TPM in Fig. 3 are provided. 

 

This cut set may be related to a failure scenario in which viruses 

or other faults cause widespread software process failures in 

clusters, which prevent completion of VM allocation estimates. 

In this scenario, clusters are successful in allocating the 

minimum number of VMs requested, but cannot allocate the 

maximum number. However, the cluster is still operational and 

is able invoke alternative round robin procedures, which also 

fail. Further software malfunctions then cause the initial 

estimate of a minimum allocation to be lost, and so the cluster 

returns a failure estimate to the controller. To model this 

scenario in the DTMC involves perturbation of the two rows in 

Fig. 3, which directly represent the two transitions in the cut set. 

These rows are shown in Fig. 12.  

 

 

 

 

 

 

 
Figure 12. TPM elements from Fig. 11 that were raised and lowered as 

a result of perturbation shown in Fig. 13.  

 

     In row 9 of Fig. 12, the transition probability of the first state 

transition in the cut set, Allocating_Maximum  Recording_ 

Allocation (TPM element {9, 12} in Fig. 3) is decreased, while 

at the same time the probability of Allocating_Maximum  

Allocating_Partial (TPM element {9, 11}) is increased. This 

perturbation represents the failure to allocate the maximum 

number of VMs requested and the subsequent invocation of 

alternative procedures. Simultaneously in row 11, the 

probability of the second transition, Allocating_Partial  

Recording_Allocation (TPM element {11, 12}), is decreased, 

while the probability of transition for Allocating_Partial  

Transferring_Failure_Estimate (TPM element {11, 10}) is 

increased. The second perturbation models the failure of the 

alternative procedures and the resulting failure response to the 

cloud controller.   

    The systematic increases and decreases of transition 

probabilities in the two rows were synchronized such that the 

transition probabilities approached 0 simultaneously. The 

perturbation was again carried out using Markov simulation 

over the first 16 hours (16 time periods) of the simulated 

duration discussed in Section IV. As before, this failure was also 

introduced into the discrete time large-scale simulation and the 

resulting changes to transition probabilities were recorded. The 

results are also plotted in Fig. 13. As in the two previous 

examples, perturbation of the DTMC could be used to 

accurately predict that total requests granted will ultimately fall 

to 0 as the incidence of this failure increases. The shape of the 

Markov simulation curve for total grants also indicates that 

grants will remain at a fairly high level, until probability of 

taking the failure transition exceeds 0.85 in both states (rows) 

being perturbed. However, the perturbation once again 

underestimates the resilience of the large-scale simulation. The 

underestimation is likely due to the reasons described earlier, 

and which we discuss further in Section VII. Nevertheless, 

perturbation of the DTMC does provide a quantitative estimate 

of the performance of the target system in this failure scenario. 

We omit the analysis of the comparative decline in full and 

partial grants, since it is similar to the two previous examples. 

9 10 11 12

9 Allocating_Maximum 0 ε 0.464 0.536

10 Transferring Failure_Estimate 0 ε 0.000 0.000

11 Allocating Partial 0 ε 0.000 1-3ε

12 Recording_Allocation 0 ε 0.000 0.000

Allocating_Minimum

Allocating_Maximum Allocating_Partial

Transferring_Failure_Estimate

Recording_Allocation

(8)

(9)

(10)

(11)

(12)

FAULT

Transferring_Allocation_Estimate

  

(13)

Maximum number of 

VMs allocated for all VM 

types requested.

Minimum number 

of VMs allocated 

for all VM types 

FAULT

Failed to allocate 

minimum number 

of VMs for one or 

more VM types

Updates complete and 

response prepared

Processing

complete 



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

16 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Decline in total requests granted due to failure of allocation 

components in the Cluster Estimating phase (a) as predicted by 

perturbing the DTMC and using Markov simulation; and (b) as 

actually computed in the large-scale simulation. The failure is modeled 

by perturbing the two state transitions in cut set #2-3 which relate to 

TPM elements {9, 12} {11, 12} (See Fig. 12). Labeled red curves 

show the decrease in the transition probabilities for these two TPM 

elements, which are plotted against the right vertical axis. The top 

horizontal axis shows the increase in the transition probability for 

Allocating_Maximum  Allocating_Partial (TPM element {9, 11} as 

the probability of transition for Allocating_Maximum  Recording_ 

Allocation (TPM element {9, 12}) is decreased. The bottom horizontal 

axis shows the increase in the probability of transition for 

Allocating_Partial Transferring_Failure_Estimate (TPM element 

{11, 10} as the probability of transition for Allocating_Partial  

Recording_Allocation (TPM element {11, 12}) is decreased. Blue 

curves show the resulting decrease in requests granted as estimated 

using the DTMC and as actually occurred in the large-scale 

simulation. These curves are plotted against the left vertical axis. 

VII. DISCUSSION  
    The preceding sections showed how a methodology which 

combines a DTMC representation, Markov simulation, and 

minimal s-t cut set analysis could be used to identify failure 

scenarios in a complex distributed system and to estimate the 

rate of performance degradation in response to increased 

occurrence of failures. The DTMC, though extensive, provides 

a succinct representation of the structure and dynamics of a 

system under study. Markov simulation can be applied to the 

DTMC to show how the system evolves over time. To 

determine which perturbations cause drastic performance 

degradations, the DTMC is formulated as a directed graph and 

minimal s-t cut set analysis is used to identify cut sets that 

disconnect the Initial state from both of the desired absorbing 

states, Request_Active (F/P). The use of minimal s-t cut set 

analysis to guarantee interruption of the flow between two 

vertices in a graph is well-known result of graph theory research 

[50-54]. Thus, systematically reducing the probability of 

transition for the state transitions in these cut sets toward 0 

prevents requests from reaching the absorbing states. The 

transitions in the cut set can thus be identified as critical 

transitions, which serve as a basis for describing potential 

failure scenarios. In previous work [12], we reported the results 

of experiments which showed that minimal s-t cut set analysis 

could be used to find all critical state transitions in an absorbing 

DTMC for a much smaller grid computing system at 1/100
th

 the 

computation cost of large-scale simulations. This exhaustive 

analysis need not be repeated for the problem described in this 

paper, as there is not the space for it. However, for the problem 

described in this paper, we estimate that perturbation of the 33 

one- and two-transition cut sets would also require about 1/100
th

 

of the computational effort needed to examine 5470 

perturbation sequences using exhaustive search (see of Section 

VI) in order to find the same sets of critical transitions. These 

savings increase even more dramatically if combinations of 

three critical transitions are considered. Though further research 

is necessary, it is our belief that both in [12] and in this study, 

we have described an analytical approach that can aid in 

understanding where and how catastrophic failures may occur in 

complex systems. The results to date have shown that the 

approach is tractable for the types of problems we have 

examined. Moreover, the approach can be combined with 

domain expertise about how specific minimal s-t cut sets relate 

to the architecture of the cloud system in order to focus on cut 

sets that should be examined in more detail (which can further 

increase computational savings). In large problems, minimal s-t 

cut set analysis can serve to reveal potential failure points that 

could be overlooked by walk-throughs of the state model. 

    In addition to identifying the points where failure is most 

likely to cause the system to collapse, the Markov simulation 

capability allows quantitative estimates about the rate of 

performance decline. This allows the analyst to identify 

thresholds beyond which performance collapses drastically. The 

potential accuracy of the estimates and identified thresholds was 

illustrated in the preceding examples. However, the examples 

also showed that while the perturbation methodology used here 

could potentially be used to predict how failure impacts the rate 

and extent of aggregate decline in requests granted, it is unable 

to predict how different types of grants (full and partial) are 

likely to be affected. As discussed earlier, this inability may 

occur because a Markov chain, as defined here, can only 

consider information in its present state to determine which 

transition to take. To make precise predictions about the impact 

of failure on full or partial grants may depend on information 

available in states that were entered earlier in the progress of 

requests and that are distant from each other in the DTMC 

graph. Thus, the Markov chain, in its current form, cannot 

represent a situation where software failures in the cloud 

controller cause a change in cluster resource allocation behavior 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e

cr
e

a
se

 i
n

 P
ro

b
a

b
il

it
ie

s 
o

f 
Tr

a
n

si
ti

o
n

P
ro

p
o

rt
io

n
 o

f 
R

e
q

u
e

st
s 

G
ra

n
te

d

Total Grants (Large Scale 
Simulation)

Increase in Probability of Transition from Allocating_Partial
state (11) to Transferring_Failure_Estimate state (10). 

Increase in Probability of Transition from Allocating_ 
Maximum state (9) to Allocating_Partial state (11). 

Decrease in probability of 
transition from Allocating_Maximum
state (9) to Recording_Allocation (12) state. 

Decrease in Probability of Transition 
from Allocating_Partial state (11) to 

Recording_Allocation state (12). 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ec

re
as

e 
in

  P
ro

b
ab

ili
ti

es
 o

f 
Tr

an
si

ti
o

n

P
ro

p
o

rt
io

n
 o

f 
R

eq
u

es
ts

 G
ra

n
te

d
 (

b
o

th
 F

u
ll 

an
d

 P
ar

ti
al

)

Increase in Probability of Transition from Selecting 
Next Cluster state (14) to Selection_Failing state (15)

(a) Total Grants (Markov Simulation)

(b) Total Grants (Large Scale Simulation)

Decrease in probability of transition from
Selecting_Next_Cluster state (14) to Transferring_
Implementation_Request (F) state (17)

Decrease in probability of transition from Selecting_ 
Next_Cluster state (14) to Transferring_
Implementation_Request (P) state (18)



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

17 

that favors full grants over partial. Extending the approach 

presented here to handle such situations is a topic for future 

research into techniques which represent and utilize inter-state 

dependencies or which can represent state memory, i.e., higher-

order Markov chains [55, 56]. This latter point is of particular 

interest. Although, as explained above, great care was taken to 

ensure that the DTMC presented here obeyed equation (1), it 

was also clear that the model could be expanded to include 

states that require memory of the history of processes. Though 

this expansion increases the complexity of the DTMC, it has the 

potential to enable more detailed analysis of causality, to enable 

more precise predictions, and to generally enrich the model. 

Evolution of the DTMC to identify new states of importance is 

the target system being modeled has been found to be both 

natural and desirable in other domains [1, 2]. We plan to pursue 

this avenue in the future. An area of particular importance to the 

nuclear power plant domain is modeling of system evolution 

over long durations, as would be required to represent the aging 

of equipment [5, 7, 8, 32, 33]. Here, the use of sets of TPMs 

provides a basis for capturing such time-inhomogenous, long 

term processes. The time duration being modeled can be 

extended by both increasing the number of time period TPMs 

and the duration of each time period (see Section IV). Further 

research would be needed to apply the methods described in 

this paper to the nuclear power plant domain and construct an 

appropriate DTMC that captures the dynamics of aging.  

   Another important question that requires further research is 

the scalability of minimal s-t cut set analysis. Cut set 

enumeration algorithms are known to be computationally 

expensive for large problems. For instance in [12], a Markov 

chain with 50 states, though sparse, was found to contain over 

10
8
 minimal s-t cut sets on paths between the initial and 

absorbing states. Further, computational characteristics of 

directed graphs are not well understood and remain a topic for 

future work. The TPM for the problem presented here is also a 

sparse matrix, which in its current form, contains sufficiently 

few cut sets so that enumeration is possible. However, because 

the DTMC has a large number of states and state transitions, 

and because it is grounded in the semantics of a real-world 

domain, the model provides a good test bed for the methods we 

have been working with thus far. To find minimal s-t cut sets in 

still larger problems, we have adapted a node contraction 

algorithm, which while not guaranteed to find all minimal s-t 

cut sets in a directed graph, can be controlled to bound 

computational cost. Efficient implementations of this algorithm 

for undirected graphs can run in O (n
2
) time [57]. We plan to 

expand the size of the current problem to add additional states 

and state transitions—and then apply the node contraction 

algorithm, and perhaps other techniques, to find critical 

transitions. It will also be interesting to learn how well domain-

specific methods employed above for categorizing cut sets will 

work for larger problems. 

   Finally, it is important to briefly discuss alternative analysis 

approaches of interest that are not based on finding critical state 

transitions.  For instance, rather than finding individual points 

of failure, it may be desirable to use the Markov model to 

understand the effect of system-wide events such as network 

instability. For this, it is necessary to perturb states that relate to 

message transmission between users, cloud controllers, and 

cluster.  The perturbation software we have written is being 

extended to increase the number of states being perturbed 

simultaneously, and we plan such experiments in the future.  

Another alternative direction that could be taken is to 

restructure the problem definition so that the model is an 

ergodic chain, rather than an absorbing chain. This can be done 

by modeling users who continually make requests over time. 

Thus, rather than entering absorbing states, individual requests 

return to the Preparing to Submit phase, where they may re-

emerge as new requests. Studying the problem as an ergodic 

chain may lead to discovery of favorable and unfavorable 

stationary distributions that the system may reach, which could 

yield new insights into behavior of cloud systems. 

VIII. CONCLUSIONS 
In this paper, we have presented a new approach for using a 

Discrete Time Markov chain (DTMC) to provide an 

understanding of dynamic system behavior and to identify 

failure scenarios that lead to catastrophic performance 

degradations. The approach employs several analysis 

techniques whose combined use has heretofore not been 

reported: the use of a detailed DTMC to provide an in-depth 

model of complex system dynamics; the use of a time-

inhomogeneous DTMC representation to simulate evolution of 

the system state over time; the use of model perturbation to 

understand potential failure scenarios and predict the rate at 

which performance is likely to degrade, and the use of graph-

theoretic methods to reduce search for critical state transitions 

in a large DTMC, which when suitably perturbed, reveal failure 

scenarios. We have shown how a detailed DTMC of a complex 

system can be formulated so that the application of this overall 

approach can be used to understand how a system might behave 

when unfavorable events occur or adverse conditions arise. 

Application of this method could be used to reveal unsuspected 

potential failures, which might be difficult to detect through 

non-automated means. Examples provided in this paper show 

the strengths of this approach in finding critical transitions that 

can be used to identify failure scenarios. In addition, we have 

discussed the current limitations of this approach and identified 

avenues for future research. It is our hope that this paper will 

provide useful ideas to other researchers working on the 

simulation and monitoring of complex systems, and ultimately, 

that the work will lead to the development of effective 

monitoring and prediction tools for real-world systems. 

REFERENCES 
[1] Smyth, P., 1993, ―Hidden Markov models and neural networks for 

fault detection in dynamic systems,‖ Proceedings of the 1993 IEEE-SP 

Workshop on Neural Networks for Signal Processing, Linthicum 

Heights, MD, USA, pp. 582–592. 

  



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

18 

[2] Smyth, P., 1994, ―Markov monitoring with unknown states,‖ IEEE 

Journal on Selected Areas in Communications, 12(9), pp. 1600–1612.  

 

[3] Ying, J., Kirubarajan, T., Pattipati, K., and Patterson-Hine, A., 

2000, ―A hidden Markov model-based algorithm for fault diagnosis 

with partial and imperfect tests,‖ IEEE Transactions on Systems, Man, 

and Cybernetics, 30(4), pp. 463–473. 

 

[4] Lee, J., Kim, S., Hwang, Y., and Song, C., 2004 ―Diagnosis of 

mechanical fault signals using continuous hidden Markov model,‖ 

Journal of Sound and Vibration, 276 (3-5), pp. 1065–108. 

 

[5] Hatzipantelis, E., Murray, A., and Penman, J., 1995, ―Comparing 

hidden Markov models with artificial neural network architectures for 

condition monitoring applications,‖ Fourth International Conference 

on Artificial Neural Networks, pp.369–374.  

 

[6] Bunks, C., McCarthy, D., and Al-Ani, T., 2000, ―Condition-Based 

Maintenance Of Machines Using Hidden Markov Models,‖ 

Mechanical Systems and Signal Processing. 14 (4), pp. 597–612. 

 

[7] Miao, Q., and Makis, V., 2007, ―A comparison study of support 

vector machines and hidden Markov models in machinery condition 

monitoring,‖ Journal of Mechanical Science and Technology, 21, pp. 

607–615. 

 

[8] Xu, Z., Ji, Y., and Zhou, D., 2008, ―Real-time Reliability 

Prediction for a Dynamic System Based on the Hidden Degradation 

Process Identification,‖ IEEE Transactions on Reliability, 57(2), pp. 

230–242. 

 

[9] Kemeny, J., and Snell, J., 1976, Finite Markov Chains. Springer, 

New York, 1976. 

 

[10] Mills, K., Filliben, J., and Dabrowski, C., 2011, ―Sensitivity 

Analysis of Koala, an Infrastructure Cloud Simulator,‖ to appear in the 

Proceedings of the 4th International Conference on Cloud Computing, 

IEEE, Washington, D.C., July 4-9, 2011. 

 

[11] Dabrowski, C., and Hunt F., 2009, ―Using Markov Chain 

Analysis to Study Dynamic Behavior in Large-Scale Grid Systems,‖ 

Seventh Australasian Symposium on Grid Computing and e-Research 

(AUSGRID 2009), Wellington, New Zealand. 

 

[12] Dabrowski, C., Hunt F., and Morrison, K., 2010, Improving the 

Efficiency of Markov Chain Analysis of Complex Distributed Systems, 

NISTIR 7744, National Institute of Standards and Technology, 

Gaithersburg, MD. 

 

[13] Hunt, F., Morrison, K., and Dabrowski, C., 2011, ―Spectral Based 

Methods That Streamline the Search for Failure Scenarios in Large-

Scale Distributed Systems,‖ Unpublished manuscript, National 

Institute of Standards and Technology. 

 

[14] Zakarian, A., and Kusiak, A., 1997, ―Modeling manufacturing 

dependability,‖ IEEE Transactions on Robotics and Automation 13(2), 

pp. 161–168. 

 

[15] Li, J., Blumenfeld, D., Huang, N., and Alden, J., 2008, 

―Throughput analysis of production systems: recent advances and 

future topics,‖ International Journal of Production Research. To 

appear. 

 

[16] Cassandras, C., Lee, J., and Ho, Y., 1990, ―Efficient parametric 

analysis of performance measures for communication networks,‖ IEEE 

Journal on Selected Areas in Communications, 8 (9), pp. 1709–1722. 

 

[17] Balakrishnan, M., and Reibman, A., 1994, “Reliability models for 

fault-tolerant private network applications,‖ IEEE Transactions on 

Computers, 43 (9), pp. 1039–1053. 

 

[18] Aupperle, B., and Meyer, J., 1991, ―State space generation for 

degradable multiprocessor systems,‖ Twenty-First International 

Symposium on Fault-Tolerant Computing, 1991 (FTCS-21), Digest of 

Papers, pp. 308–315. 

 

[19] Chiola, G., Dutheillet, C., Franceschinis, G., and Haddad, S., 

1993, ―Stochastic Well-Formed Colored Nets and Symmetric 

Modeling Applications, IEEE Transactions on Computers,‖ 42 (11), 

pp. 1343–1360. 

 

[20] Trivedi, K., Ramani, S., and Fricks, R., 2003, ―Recent advances 

in modeling response-time distributions in real-time systems,‖ 

Proceedings of the IEEE, 91(7), pp. 1023–1037. 

 

[21] Laprie, J., and Kanoun, K., 1992, ―X-ware reliability and 

availability modeling,‖ IEEE Transactions on Software Engineering 

18(2), pp. 130–147. 

 

[22] Goseva-Popstojanova, K., and Trivedi, K., 2001, ―Architecture-

based approach to reliability assessment of software systems,‖ 

Performance Evaluation, 45(2-3), pp. 179–204. 

 

[23] Song, B., Ernemann, C., and Yahyapour, R., 2004, ―Parallel 

Computer Workload Modeling with Markov Chains,‖ Lecture Notes in 

Computer Science, 3277, pp. 47–62. 

 

[24] Akioka, S., and Muraoka, Y., 2003, ―The Markov Model Based 

Algorithm to Predict Networking Load on the Computational Grid,‖ 

Journal of Mathematical Modelling and Algorithms, 2, 251–261. 

 

[25] Wu, J., and Deng, F., 2006, ―Finite Horizon Optimal Control of 

Networked Control Systems with Markov Delays,‖ Proceedings of the 

Sixth World Congress on Intelligent Control and Automation, pp. 

4513–4517. 

 

[26] Feng, D., Wencai, D., and Zhi, L., 2009, ―New Smith Predictor 

and Nonlinear Control for Networked Control Systems,‖ Proc. of the 

International MultiConference of Engineers and Computer Scientists, 

(Volume II), pp. 1148–1153. 

 

[27] Noriega, H., Saldanha, P., and Frutuoso e Melo, P., 1999, 

―Reliability Appraisal in a PWR Auxiliary Feed-Water System Under 

Aging Point Processes,‖ Transactions of the Fifteenth International 

Conference on Structural Mechanics in Reactor Technology (SMiRT-

15), Volume III, Seoul, Korea, pp. 127–134. 

 

[28] Fleming, K., 2004, ―Markov models for evaluating risk-informed 

in-service inspection strategies for nuclear power plant piping 

systems,‖ Reliability Engineering and System Safety, 83, pp. 27–45. 

 



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

19 

[29] Kwon, K., Kim, J., and Seong, P., 2002, ―Hidden Markov Model-

Based Real-Time Transient Identifications in Nuclear Power Plants,‖ 

International Journal of Intelligent Systems, 17, pp. 791–811. 

 

[30] Ying, J., Kirubarajan, T., Pattipati, K., Patterson-Hine, A., 2000, 

―A hidden Markov model-based algorithm for fault diagnosis with 

partial and imperfect tests.,‖ IEEE Transactions on Systems, Man, and 

Cybernetics, Part C: Applications and Review, 30(4), pp.463-473. 

 

[31] Zhu, H., Zhang, C., and Yue, X., 2010, ―Fault Diagnosis of 

Nuclear Power Equipment Based on HMM-SVM and Database 

Development,‖ Advanced Materials Research, Volumes 139–141, pp. 

2532–2536. 

 

[32] Bunks, C., McCarthy, D., and Al-Ani, T., 2000, ―Condition-Based 

Maintenance Of Machines Using Hidden Markov Models,‖ 

Mechanical Systems and Signal Processing. 14(4), pp. 597-612. 

 

[33] Grimberg, R. et al., 2007, ―Hidden Markov Chain Model for 

Lifetime Prediction of Pressure Tubes in PHWR Nuclear Power 

Plant,‖ Sixth International Conference on NDE in Relation to 

Structural Integrity for Nuclear and Pressurized Components, 

Budapest, Hungary. 

 

[34] Schweitzer, P., 1968, ―Perturbation Theory and Finite Markov 

Chains,‖ Journal of Applied Probability. 5( 2), pp. 401–413.   

 

[35] Delebecque, F., 1983, ―A Reduction Process for Perturbed 

Markov Chains,‖ SIAM Journal of Applied Mathematics, 43, pp. 325–

250. 

 

[36] Hassin, R., and Haviv, M., 1992, ―Mean Passage Times and 

Nearly Uncoupled Markov Chains,‖ SIAM Journal of Discrete 

Mathematics, 5(3), pp. 386–397. 

 

[37] Meyer, C., 1989, ―Stochastic Complementation, Uncoupling 

Markov Chains, and the Theory of Nearly Reducible Systems,‖ SIAM 

Review, 31(2), pp. 240–272. 

 

[38] Stewart, W., and Dekker, M., 1994, Numerical Solution of 

Markov Chains. Princeton University Press, Princeton, New Jersey. 

 

[39] Ho, Y., and Li, S., 1988, ―Extensions of infinitesimal perturbation 

analysis,‖ IEEE Transactions on Automation Control, AC-33 (5), pp. 

427–438. 

 

[40] Suri, R., 1989, ―Perturbation Analysis: The State of the Art and 

Research Issues Explained via the GI/G/l Queue,‖ Proceedings of the 

IEEE, 77(1), pp. 114–138. 

 

[41] Cao, X., and Zhang, J., 2008, ―Event-Based Optimization of 

Markov Systems,‖ IEEE Transactions on Automatic Control, 53 (4), 

pp. 1076–1082. 

 

[42] Cao, X., 2005, ―Basic Ideas for Event-Based Optimization of 

Markov Systems,‖ Discrete Event Dynamic Systems: Theory and 

Applications, 15, pp 169–197.  

 

[43] Siegle, M., 1992, ―On Efficient Markovian Modelling,‖ 

Proceedings of the QMIPS Workshop on Stochastic Petri Nets, Sophia 

Antipolis, France, pp. 213–225. 

[44] Buchholz, P., 1995, ―Hierarchical Markovian Models: 

Symmetries and Reduction, Performance Evaluation,‖ 22(1), pp. 93–

100. 

 

[45] Nicol, D., Sanders, W., and Trivedi, K., 2004, ―Model based 

evaluation: from dependability to security,‖ IEEE Transactions on 

Dependable and Secure Computing, 1(1), pp. 48–65. 

 

[46] Sanders, W., and Meyer, J., 1991, ―Reduced base model 

construction methods for stochastic activity networks,‖ IEEE Journal 

on Selected Areas in Communications, Special Issue on Computer-

Aided Modeling Analysis, and Design of Communication Networks, 9 

(1), pp. 25–36. 

 

[47] Obal, W., and Sanders, W., 2001, ―Measure-adaptive state-space 

construction,‖ Performance Evaluation, 44(1-4), pp. 237–258.  

 

[48] Jacobi, M., and Gornerup, O., 1986, ―A Dual Eigenvector 

Condition for Strong Lumpability of Markov Chains,‖ Submitted to 

Arxiv preprint arXiv:0710.1986. 

 

[49] Rosenberg, D., Solan, E., and Vielle N., 2004, ―Approximating A 

Sequence of Observations By A Simple Process,‖ The Annals of 

Statistics. 32(6), pp. 2742–2775. 

 

[50] Tsukiyama, S., Shirakawa, I., Ozaki, H., and Ariyoshi, H., 1980, 

―An Algorithm to Enumerate All Cut Sets of a Graph in Linear Time 

per Cutset,‖ Journal of the ACM, 27(4), pp. 619–632. 

 

[51] Provan S., and Ball M., 1984, ―Computing Network Reliability in 

Time Polynomial in the Number of Cuts,‖ Operations Research, 32(3), 

pp. 516–526. 

 

[52] Lin, H., Kuo, S., and Yeh, F., 2003, ―Minimal cutset enumeration 

and network reliability evaluation by recursive merge and BDD,‖ 

Proceedings of the 8th IEEE International Symposium on Computers 

and Communications, Kemer-Antalya, Turkey, pp. 1341– 1346. 

 

[53] Yan L., Taha H., and Landers T., 1994, ―A Recursive Approach 

for Enumerating Minimal Cutsets in a Network,‖ IEEE Transactions 

on Reliability, 43(3), pp 383–387.  

 

[54] Karger, D., 2001, ―A Randomized Fully Polynomial Time 

Approximation Scheme for the All-Terminal Network Reliability 

Problem,‖ SIAM Review, 43(3), pp. 499–522.  

 

[55] Konrad, A., Joseph, A., Ludwig, R., and Zhao, B., 2001, A 

Markov-Based Channel Model Algorithm for Wireless Networks. 

University of California, Berkeley. Report No. UCB/CSD-01-1142. 

 

[56] Kanal, L., and Sastry A., 1978, ―Models for Channels with 

Memory and their Applications to Error Control,‖ Proceedings of the 

IEEE. 66(7), pp.724–743. 

 

[57] Karger, D., and Stein, C., 1996, ―A New Approach to the 

Minimum Cut Problem, Journal of the ACM. 43, pp. 601–640. 

 

 

 



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

20 

ANNEX A 

DETAILS OF STATE SPACES FOR ADDITIONAL PHASES OF CLOUD MODEL 
 

In the annex, we provide further description of phases 

omitted from the body of the paper, but which some readers 

may find to be of value. The annex also serves to document the 

size and complexity of our model. In all annex figures, states 

colored in blue pertain to network transmission, those in violet 

relate to the actions of the human operator as she or he is 

submitting the request to the cloud system. States colored in 

yellow represent the state of the request when it is being acted 

upon by the cloud controller and those in green indicate that the 

request is being processed by the clusters.  

(1) Preparing to Submit. During this phase, shown in 

Figure A.1, the user prepares the request message and submits it 

to the cloud controller. Initially, when a start time arrives in the 

discrete event large-scale model (See [10]), a Thinking (or 

waiting) state is entered. In this state, the user is deciding on the 

content of the request and waiting for an opportune time to 

submit. In the large-scale model, this state may persist for an 

extended period of time. Once the Thinking state ends, the 

request transitions to the Submitting state, during which the user 

prepares and sends the message containing the request to the 

cloud controller. Once the message is sent, the request enters a 

Transferring_User_Request state, where it remains until the 

message is either received by the cloud controller (see Annex 

A(2) for the Initial Processing phase) or the message fails. In 

the event of failure, the request re-enters the Submitting state. 

Note there are two transitions from the Transferring_ 

User_Request state to the Submitting state indicating that the 

message has failed. These transitions are triggered by the events 

Undelivered Message and timeout. The two transitions denote 

alternative circumstances which may occur that cause messages 

to fail. When failure occurs for either of these reasons and the 

Submitting state is re-entered, the user may then attempt to re-

submit the message. If the transmission is unsuccessful after 

repeated resubmissions, the request re-enters the Thinking state 

for reconsideration by the user. In the event that more failures 

occur, the request repeats the transitions between the Thinking 

and Submitting state until a predetermined request time period 

(chosen at random) has elapsed, at which time the request is 

deemed to have failed and enters the Failed_State.  

Figure A.1 also shows the Transferring_Failure_Response 

state. This state represents the transmission of a message from 

the cloud controller to the user, which notifies the user that no 

cluster can be found to satisfy the request (See Annex A(3) on 

the Allocating Request phase for a description of the 

circumstances under which this message is sent.) The request 

transitions from Transferring_Failure_Response to Submitting. 

Note that the model indicates this transition is taken whether the 

message from the cloud controller succeeds or fails. When the 

transition is taken due to message failure, this indicates that a 

user-initiated timeout has occurred, and the state of the request 

has reverted to the user.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A.1 State diagram for Preparing to Submit phase. States where 

the request is being processed by the user are shown in purple. States 

indicating that information about the request is being transmitted 

across the network are shown in blue. The Failed absorbing state is in 

gray. For each state, related row numbers from the TPM in Fig. 3 are 

provided. 

 

(2) Initial Processing. Once the request message is received by 

the cloud controller, it enters the Initial Processing phase. The 

state space for this phase is shown in Figure A.2. Entry into this 

phase is signified by a transition from the Transferring_ 

User_Request state to the Initiating_Request_Session state. The 

latter represents the state of the request as it is being checked 

for validity and correctness. In the large-scale simulation, a 

request that fails this check is returned to the user. In the 

Markov model, this failure is represented by a transition to the 

Transferring_Failure_Response state, from which the request 

re-enters the Preparing to Submit phase, as described above. If 

a request passes the check in the large-scale simulation, the 

cloud controller prepares messages to each of its subordinate 

clusters, requesting an estimate of the extent to which each 

cluster can satisfy the request. The controller then waits for 

clusters to respond for a predetermined period of time. In the 

Markov model, the corresponding behavior is represented by 

the entry of the request into the Preparing_Cluster_Estimate_ 

Requests state, followed by a transition to the Transferring_ 

Thinking

Start 

time 

arrives

Think

period ends
Submission 

fails

Transferring_User_Request

Request

prepared Undelivered Message

 (Server failure)

Submitting

See Initial 

Processing phase

Transferring_Failure_Response

Failed_State

Request 

time expires

SEND SUCCEEDS 

or USER TIMEOUT

See Initial Processing and 

Allocating Request phases

Initial state

SEND 

SUCCEEDS

USER

TIMEOUT

(2)

(3)

(4)

(16)

(39)

(1)



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

21 

Estimate_Request state. Normally, the request then enters the 

Cluster Estimating phase, as described in Sec III.  

    However, failures may interfere with the progress of the 

request. In the large-scale simulation, the cloud controller may, 

in rare situations, not be able to find an eligible cluster. This 

may occur, if for instance, communication failures or other 

malfunctions isolate the cloud controller. Under these 

circumstances, the controller returns a failure message to the 

user. In the Markov model, this event is represented by a 

transition from the Preparing_Cluster_Estimate_Requests state 

to the Transferring_Failure_Response state. In the large-scale 

simulation, a message requesting an estimate from the cluster 

may fail. If this happens, the cloud controller becomes aware of 

the failure only after its wait period has expired, at which point 

the controller issues a timeout and determines what action to 

take next. In the Markov model, the failure of this message from 

all clusters is represented by a transition from the Transferring_ 

Estimate_Request state to the Selection_Failing state, as was 

described in Section III above and is discussed further below.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A.2 State diagram of Initial Processing phase. States in yellow 

indicate the request is being processed by the Cloud Controller. States 

in blue indicate the request is in a state of transmission between the 

user and the controller or between the user and the clusters. For each 

state, related row numbers from the TPM in Fig. 3 are provided. 

 

(3) Allocating Request. This phase begins when either (a) all 

clusters have responded to the cloud controller following the 

Cluster Estimating phase (see Sec III), or (b) the wait period for 

cluster responses has ended and the cloud controller declares a 

timeout. Figure A.3 shows the state diagram of this phase. At 

the beginning of the phase, the cloud controller determines 

which, if any, of the subordinate clusters that have responded 

affirmatively should implement the request. If no cluster has 

responded and indicated that a partial or full allocation is 

possible, the request is returned to the user, with an indication 

that not enough resources were available (NERA) to satisfy the 

request. Failure by a cluster to provide an affirmative estimate 

may be due to any combination of the following three events: 

(a) a determination by the cluster that it does not have the 

resources (NERA) and a response to the controller to this effect; 

(b) failure of the estimate request message issued by the cloud 

controller; or (c) failure of the estimate response message from 

the cluster. In the Markov model, events (a–c) are represented 

by aggregated transitions to the Selection_Failing state as 

follows. When event (a) occurs, a transition from Transferring_ 

Failure_Estimate to Selection_Failing is taken. When event (b) 

occurs, a transition from Transferring_Estimate_Request state 

to Selection_Failing occurs. When event (c) occurs, a transition 

from Transferring_Allocation_Estimate to Selection_Failing is 

taken. As explained in Section III, when events (a–c) occur for 

all clusters, the request state is aggregated to the Selection_ 

Failing state. From the Selection_Failing state, a transition is 

taken to the Transferring_Failure_Response state, where the 

state of the request reverts to the Preparing to Submit phase 

(i.e., back to the control of the user).  

     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure A.3 State diagram for Allocating Request phase. States in which 

the request is being processed by the cloud controller are shown in 

yellow. States in which information about requests in being transmitted 

are blue. In addition to the state transitions shown in the diagram, any 

state may transition to the Submitting state in the Preparing to Submit 

phase to represent a user timeout. For each state, related row numbers 

from the TPM in Fig. 3 are provided. 

Transferring_Implementation_Request(F/P)

Selecting_Next_Cluster

See Cluster Estimating phase

To user. See Preparing 

to Submit phase

Cluster list empty, or 

unable to select cluster

Cluster 

selected

Transferring_Implementation_Failure

Transferring_Failure_Response

Transferring_Allocation_Estimate

Transferring_Estimate_Request
TIMEOUT

SEND SUCCEEDS 

or TIMEOUT

TIMEOUT 

See Implementing

Request phase

 

See Initial 

Processing phase

SEND SUCCEEDS 

or TIMEOUT

Transferring_Failure_Estimate

SEND 

SUCCEEDS 

Selection_Failing

(15)(14)

(7)

(10)(13)

(17), (18)

(16)

(32)

TIMEOUT 

Processing

complete

SEND SUCCEEDS 

or TIMEOUT

Initiating_Request_Session

See Cluster 

Estimating phase

See Preparing to 

Submit phase

User request 

valid

User request Invalid 

or erroneous

Preparing_Cluster_Estimate_Requests

Requests 

prepared

Transferring_Estimate_Request

Transferring_User_Request

See Allocating 

Request phase

SEND 

SUCCEEDS

Transferring_Failure_Response

TIMEOUT

No eligible 

clusters found

(4)

(5)

(6)

(7)

(16)

SEND 

SUCCEEDS

TIMEOUT
Undelivered 

Message

(Server failure)

SEND 

SUCCEEDS

or TIMEOUT



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

22 

    In the large-scale simulation, if there are clusters that have 

responded positively, the cluster responses are sorted using one 

of several evaluation criteria (see [10] for details]). The highest-

ranked cluster in the sorted list is sent a message indicating that 

the cluster should implement the request, i.e., reserve and 

physically boot the VMs. In the Markov model, these events 

correspond to a transition from the Transferring_Allocation_ 

Estimate state to the Selecting_Next_Cluster state. Selection by 

the controller of a cluster to implement the allocation 

corresponds to transition to the Transferring_Implementation_ 

Request (F/P) state. 

    Once the selected cluster receives the message, the 

Implementing Allocation (F/P) phase is entered. In the large-

scale simulation, if all goes well in this phase (described in 

Annex A(4) below), the cluster will respond to the cloud 

controller indicting that implementation has succeeded, and the 

controller will relay the message to the user (see below). 

However, the implementation message to the cluster may fail. 

Alternatively, the internal state of the chosen cluster may 

change, which causes the cluster to be unable to implement the 

request, for reasons described below in Annex A(4). The cloud 

controller becomes aware of the failure either because the 

cluster responds and indicates that it can no longer implement 

the request or through the timeout process described above. If 

either circumstance occurs, the cloud controller then selects the 

next most highly-ranked cluster on its sorted list. If 

implementation of the next selected cluster fails, the process 

repeats until either success is achieved or until no cluster can be 

found. In the latter event, the controller must inform the user 

that not enough resources were available to satisfy the request. 

The situation where the controller ultimately fails to find a 

cluster on which to implement the request is represented by a 

transition from the Selecting_Next_Cluster state to the 

Selection_Failing state, from which a transition is taken to the 

Transferring_Failure_Response state, as explained previously 

 

(4) Implementing Allocation (F/P). Successful receipt of the 

implementation message by a cluster is represented in the 

Markov model by a transition from the Transferring_ 

Implementation_Request state to the states of the Implementing 

Allocation (F/P) phase. In this phase, the selected cluster 

attempts to reserve the resources for the VMs in the request and 

to physically initiate the VMs on the computing nodes that 

contain those resources.  The process is depicted in Figure A.4. 

The state space of this phase consists of 11 states through which 

there are numerous paths that the request may take, including 

paths taken as a result of high workload levels and failures.  

    In the large-scale simulation, if there are no processing 

problems, the cluster receives the request and verifies the 

availability of the resources used to make its original estimate in 

the Cluster Estimating phase. If verification succeeds, the 

cluster sends messages to the nodes containing the resources for 

the requested VMs, causing the nodes to initiate booting, or 

launching, of the VMs. Normally, a request for which a full 

allocation was previously estimated by the cluster is 

implemented as a full request, and a partial request estimate is 

implemented as a partial request. In the Markov model, this 

process is represented by a transition from the Transferring_ 

Implementation_Request (F/P) state to the Verifying_ 

Allocation (F/P) state to indicate consistency with the previous 

allocation estimate. Recall the Transferring_Implementation_ 

Request (F) and Transferring_Implementation_Request (P) are 

considered two separate states, one for full and one for partial 

allocation. Her, the FF; PP notation indicates that 

Transferring_Implementation_Request (F) transitions to 

Verifying_Allocation (F) state, and the Transferring_ 

Implementation_Request (P) state transitions to the Verifying_ 

Allocation (P) state. Following successful verification, a 

transition is taken to one of the Launching_Instances (F/P) 

states, which under normal operating conditions (with no 

failures) also follows the FF; PP restriction. If launch 

operations in the large-scale simulation are successful, the 

action is recorded by the cluster and a confirmation message is 

sent to the cloud controller, which then prepares and transfers a 

grant message to the user. At this point, the request is active and 

the related resources are available to the user. The Markov 

model represents these events by transitions from Launching_ 

Instances (F/P) to Recording_Launch (F/P), followed by 

transition from Recording_Launch (F/P) to Transferring_ 

Implementation_Success (F/P), and then by transitions to 

Preparing_Grant (F/P), Transferring_Grant (F/P), and finally 

by transition to the absorbing states Request_Active (F/P). In 

this sequence of transitions, the FF; PP restriction is 

observed under normal operating conditions.  

    However, these problem-free paths may not be possible. 

There are circumstances in the large-scale simulation under 

which the request must be processed along other paths through 

this phase. In what follows, we review these situations. First, 

under heavy workload conditions, implementation of some 

requests may be significantly delayed. In the DTMC, this is 

represented by transitions from the Transferring_ 

Implementation_Request (F/P) states to the Queued_for_ 

Implementation (F/P) states. Exit from the queue is represented 

by transitions to the Verifying_Allocation (F/P) states, with 

FF; PP restrictions observed. The request may then resume 

its path through this phase to one of the two absorbing states.  

      A different problem occurs if resources used in the original 

cluster estimate subsequently become unavailable, so that the 

request cannot be implemented in accordance with the original 

estimate. This situation may be detected by the cluster during its 

initial verification. If, as a result, the verification completely 

fails and the request can no longer be implemented, the cluster 

terminates the implementation process and sends a failure 

message to the cloud controller, which must then select another 

cluster (see Allocating Request phase). In the Markov model, 

this event is represented by a transition from the Verifying_ 

Allocation (F/P) states (depending on whether a full or partial 

allocation is being processed) to the Transferring_ 

Implementation_Failure state, which then transitions to the 

Selecting_Next_Cluster state in the Allocating Request phase. 



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

23 

 

       

Transferring_Implementation_Request (F/P)

Queued_For_Implementation (F/P)

Verifying_Allocation (F/P)

Launching_Instances (F/P) Reallocating_VM_Instances (F/P)

Rolling_Back_ImplementationRecording_Launch (F/P)

Transferring_Implementation_Success (F/P)

SEND 

SUCCEEDS

Cluster 

selected

Request at 

top of queue

Verification 

complete

Number launch 

failures < threshold

Failed to launch > minimum number of

Instances for one or more VM types 

Transferring_Implementation_Failure

SEND 

SUCCEEDS

Updates rolled back and 

processing compete or fault

Database updates 

and processing compete

TIMEOUT

SEND SUCCEEDS 

or TIMEOUT

Verification 

fails or fault

Number VM launch 

failures >= threshold

VMs re-allocated

      See Allocating    

      Request phase   

Preparing_Grant (F/P) Transferring_Grant (F/P) (to user)

Response 

prepared

TIMEOUT
SEND 

SUCCEEDS

See Preparing 

to Submit phase

SEND 

SUCCEEDS

F  (F or P); 

P  P

F  (F or P); 

P  (F or  P)

Request Active (F/P)

F F; P  P

F F; P  P

(17), (18)

(29)

(32)

(19), (20)

(21), (22)

(23), (24) (25), (26)

(27), (28)

(30), (31)

(33), (34) (35), (36)

(37), (38)

TIMEOUT

TIMEOUT

TIMEOUT

FAULT

FAULT

F F; 

P  P
F F; 

P  P

F F; 

P  P

F F; 

P  P

F F; 

P  P

F F; 

P  P
F F; 

P  P

Figure A.4 State diagram for Implementing Allocation phase. States in which the request is being processed by the 

cluster are shown in green. States where the request is being processed by the cloud controller are in yellow. States 

in which information about requests in being transmitted are blue. The diagram shows transitions to the Allocating 

Request phase that signify timeouts declared by the cloud controller for three states involving message transmission, 

the Queued_for_Implementation state, and the Reallocating_VM_Instances (F/P) states. Other state transitions that 

represent timeouts declared by the cloud controller or user are omitted to simplify the diagram. In addition, any state 

may transfer to the Submitting state in the Preparing to Submit phase via user timeout. For each state, related row 

numbers from the TPM in Fig. 3 are provided. 



This paper is a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

24 

During verification in the large scale simulation, it is possible 

that changes in the state of cluster resource availability are 

detected which force a full grant request to be reduced to the 

status of a partial grant request. In rare cases, if availability 

increases, a partial grant may be elevated to a full grant. In the 

Markov model, these events are represented by transitions from 

Verifying_Allocation (F) state to the Launching_Instances (P) 

state and from the Verifying_Allocation (P) state to the 

Launching_Instances (F) state. The switches from full to partial 

and vice versa are represented by the F  (F or P) and P  (P 

or F) notation on the transitions from the Verifying_Allocation 

(F/P) state.   

   Yet another problem occurs in the large-scale simulation, if 

failure of needed VM resources becomes apparent only during 

launch operations. This circumstance causes the cluster to 

attempt to re-allocate the missing VMs for the request. If the re-

allocation is fully successful, the implementation process may 

then complete normally. However, if re-allocation is not fully 

successful, a request may be reduced from full to partial 

allocation status, or a previously estimated partial allocation 

may lose VMs. Note that repeated re-allocation attempts are 

possible, ending only when either success is achieved or when 

re-allocation attempts can no longer find more VM resources 

that can be used. In the worse case, repeated re-allocations and 

launch attempts result in minimum levels of requested VMs no 

longer being met. In this case, the cluster is forced to abort the 

operation, roll back previous successful launches, and return 

failure to the cloud controller. In the Markov model, a fully 

successful re-allocation process is represented by a transition 

from Launching_Instances (F/P) state to the Reallocating_ 

VM_Instances (F/P) and back to Launching_Instances (F/P) 

with the FF; PP restriction observed in both directions. A 

case where a full allocation has been reduced to a partial 

allocation after repeated re-allocation attempts is represented by 

a transition from Launching_Instances (F) to Recording_ 

Launch (P). A case where repeated re-allocation cannot restore 

minimum levels of VMs is represented by a transition from 

Launching_Instances (F/P) state to the Rolling_Back_ 

Implementation state, and then a transition to the Transferring_ 

Implementation_Failure state. In all cases, the decision to cease 

re-allocation attempts is represented as residing in the 

Launching_Instances state in accordance with the operation of 

the large-scale simulation.  

     Finally, the DTMC represents the effects of catastrophic 

software and hardware process failures on the implementation 

process. In the large-scale simulation, such events could force 

the cluster to abort the implementation process, roll back any 

allocation commitments that have been made, and return failure. 

Figure A.4 represents such abort events that occur in the 

Launching_Instances (F/P), Recording_Launch (F/P), and 

Reallocating_VM_Instances (F/P) states with transitions to the 

Rolling_Back_Implementation state, followed by a transition to 

the Transferring_Implementation_Failure state. In some cases, 

further process errors could prevent successful roll back 

operations, and this is possibility is accounted for in the 

transition from Rolling_Back_Implementation state to the 

Transferring_Implementation_Failure state. In the most 

extreme cases, process failure may cause the cluster to go down. 

In such cases, roll back operations not only fail to complete, but 

the cluster is unable to provide any response to the cloud 

controller.  When this happens, a timeout may be declared by 

the cloud controller or, in some cases, by the user. Figure A.4 

explicitly represents changes in state created by timeouts 

declared by the cluster controller for states in which timeout 

events are considered to be the most likely. For all other states, 

transitions caused by timeout declared by the cloud controller 

or user have been omitted to prevent the diagram from being 

unreadable, but are nevertheless understood to exist. 

 

 


