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Outline 

Ferromagnet-based Spintronics.   
• Ferromagnets: Spin filters  
• Spin torque: Fundamental interaction between spin 

current and ferromagnet 
 

Device-level microwave measurements: Probe of 
structure/function. 

• Spin torque MRAM 
• Correlate error rates to spectral behavior 

• Spin Torque Oscillators  
• Phase locking, frequency noise 
• STOs as local probes of magnetization  

 
Outlook & Future Challenges. 
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Polarizing layer (thick):  “Fixed” Active layer (thin):  “Free” 

Spin Transfer: Angular Momentum Absorption 

Absorbed angular 
momentum: Torque 

Transmitted e- spins Magnetization 

Incident e- current 

Newton’s Third Law:   
Reaction torque on M; 
Depends on sign of I 
Complementary effect: GMR 
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Magnetization Dynamics: Spin Torque 

erSpinTransfDampingLarmor TTT
dt
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Spin torque can 
counteract damping! 

Slonczewski, 1996 

effHm
dt
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Larmor term: 
    precession 
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Damping term: 
    aligns M with H 

TSpin Transfer   TDamping   
       J ~ 107A/cm2 

Nanoscale effect:  larger 
at smaller length scales 
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What does Spin-torque do? 

Sign of torque depends on direction of current flow: causes motion 
of the magnetization, depending on the magnetic configuration   

Bistable device (small 
fields): Current-induced 

switching 
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Microwave freq. 
power output 

Current-
driven 
hysteretic 
switching 

…fundamentally new way to manipulate magnetization 
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Spin torque Magnetic RAM. 

6 

Current 

Free layer 

Fixed layer 
(SAF) 

PtMn (20 nm) 

…Potential nonvolatile RAM: Need to determine details of switching 

V 

t 
read read 

reset 
reset 
pulse 

write pulse 
(5-100 ns) 

 
 

• Measure write error rate (WER) for 
large numbers of events: compare to 
two state (single domain) model 

• Also can measure real-time switching 
trajectory (R vs. t) 

See also poster by 
Evarts, today 

150 nm 
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“Nanopillar” Schematics: 

• Tunnel junctions:  large MR (70%) 
& spin polarization 



ST-MRAM: Write Error Rate Variations 
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• Largely follows single exponential  
expected from single domain 

• Shorter pulses require higher 
voltage to achieve same error rate 
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• Deviates from single exponential 
at higher biases 

• Evidence of non single domain 
behavior? 



ST-MRAM: Resonance Spectra 
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ST-ferromagnetic 
resonance (ST-FMR): 

• Inject AC current, measure device 
response vs. f, H 

• Determine resonant modes of device 
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• ‘Typical’ and ‘anomalous’ devices have 
similar spectra at low bias 
 Implies similar physical structures 

Applied  
field 

*Mode patterns determined with OOMMF micromag. simulator (oommf.nist.gov) 



ST-MRAM: Spectra vs. Voltage Bias 
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*Mode patterns determined with OOMMF micromag. simulator (oommf.nist.gov) 

Spectra of anomalous devices are function of voltage bias 

• Higher order modes excited at high bias: become similar in magnitude to 
fundamental mode 

• Deviation from single domain spectra: deviation of WER 

Linear response not solely responsible for variations: Requires 
measurements of full devices 



Au 

Cu 
“Fixed” layer 

“Free” layer 

~60 nm 

q 

Spin Torque Oscillators 
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q Applied field 
Top electrical 
contact 

Spin valve 
mesa 

Current concentrated by electrical 
lead: Magnetization is unpatterned 



Au 

Cu 
“Fixed” layer 

“Free” layer 

~60 nm 

q 

Spin Torque Oscillators 
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q Applied field 
Top electrical 
contact 

Spin valve 
mesa 
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• DC current induces microwave 
precession 

• Frequency tunable with current  
• Line widths in 1-100 MHz range 

Current concentrated by electrical 
lead: Magnetization is unpatterned 

…STOs are nonlinear, current tunable oscillators 



STOs: Metrology Challenges (i.e., Why?) 
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Measurements are of magnetic devices at nanometer scales, 
at frequencies >10 GHz 

Understanding details of 
oscillations (line width, frequency, 
phase noise): dependence on 
nanoscale (magnetic) structure, 
defects, effects on phase locking 

Quantifying nonlinear coupling of STOs 
via currents, fields, and spin waves, to 
enable large-scale arraying—e.g.,  bio-
inspired NonBoolean architectures* 

currents 

Spin waves 

* Collab. with Intel, Notre Dame, Pitt., others 
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Injection Locking—CW microwaves  

• Device locks to f/2 (= 10.48 GHz) 
• Width of locking range (in frequency) depends on drive amplitude 
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AC current 

DC input 
Device 
 output 

Oscilloscope 

Measurement Setup 

RF 
Source 

10  MHz Atomic Clock 

Trig 

4000 averages 

• Scope trigger coherent with microwave source: 
Any signal not coherent with microwaves will average to zero… 
determine phase vs. frequency difference 

 

Pulse Picker 

Injection Locking: Time domain 
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Spectral  
locking range 

Phase vs. Bias Avg Amplitude vs Df 

Phase and Amplitude vs. Frequency Difference 

• Phase changes as a function of DC bias 

VRF = 21 mV 

• Amplitude ∝ time device is locked. 

• Even when partially “locked” the STO 
maintains well-defined phase with the 
injected signal: Stochastic process 
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Pulsed 
microwaves 

DC input 
Device 
 output 

Oscilloscope 

Measurement Setup 

RF 
Source 

10  MHz Atomic Clock 

Trig 

4000 averages 

• Use a “pulse picker” to trigger scope and gate RF source 
• Microwaves are pulsed:  100 ns on and 900 ns off , to allow device 

decoherence ( ≈ 80 ns required) 
  

Pulse Picker 

Pulsed Injection Locking: Time-to-lock 
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Locking to Pulsed Microwaves Locking Time vs. RF Voltage 
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• Consider“locked” when envelope 
reaches 90% of steady-state 
amplitude. 

• Locking can occur in a few 10’s of cycles. 
• Locking time varies quasi-linearly with RF. 
• Consistent with Adler ~ 1/VRF. 
• Minimum VRF required to lock agrees with 
             CW measurements. 
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Quantifying Oscillator Performance 
V (t)  V0  (t) sin 20t (t) 

• Simple method: Spectrum analyzer 

- Measures power spectrum of V(t) 

- But, cannot separate ε(t) and ϕ(t) 

- May depend on measurement time 

• Better method: Direct 
measurement of ϕ(t) or ν(t)  

- Not affected by ε(t) 
- Power spectrum of ϕ(t) or ν(t) 

easy to compare with theory 

Refs: 
Allan variance   James Barnes and David Allan, 1964 (NIST) 

Collected papers     NIST Technical Note 1337 (http://tf.nist.gov/general/publications.htm) 

Phase noise tutorial     http://tf.nist.gov/timefreq/phase/Properties/toc.htm 

8.2 8.4 8.6 8.8 9.0

0.0

2.5

5.0

 

 

P
S

D
 (

p
W

/M
H

z
)

Frequency (GHz)

White phase noise 

1/f phase noise 

Random walk of 
phase 

White freq. noise 

1/f freq. noise 

Random walk of 
freq. 

f 0 

f -1 

f -2 

f -3 

f -4 

f 0 

f -1 

f -2 

f 1 

f 2 

S S 

18 



•Resonance is in 5-30 GHz range: directly digitize, or mix down 
to low frequency—use SA IF (70 MHz+/-30 MHz)  

•Amplify, digitize at 1 GS/s (low pass filter @ 150 MHz) 

Measurement of V(t) 
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Measurement of f(t): Sliding DFT 
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STO: Probe of local magnetic environs 
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STOs respond to local (nanoscale) net effective field: Sum of 
external, current- and spin-induced, and local anisotropy 
fields 

Applied field  

Magnetic anisotropy Oersted field  

…Device/materials physics challenge: Controlling these fields to 
produce desired functional behavior 



STOs: Mutual Phase Locking 
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Spin current induces local oscillation of M: couples to 
surrounding medium  “spin waves” 

nanocontact 

radiating 
spin-waves e- 

precessional  
excitation 

• Mechanism for coupling oscillators 
without additional wiring layer 
• Additional source/sink for 

dynamics: Larger effective volume 

ac out Ic1 

Ic2 

400 nm 
Magnetic 
interaction 

…Bias Ic2, sweep Ic1 



STOs: Mutual Phase Locking 
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Spin current induces local oscillation of M: couples to 
surrounding medium  “spin waves” 

ac out Ic1 

Ic2 

400 nm 
Magnetic 
interaction 
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Locking range 
• Contacts phase lock when f1 approaches f2 

• Combined power increases: phase coherence 
• Line width narrows when locked: Larger effective volume 



Future directions. 
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Metrology of spin currents & transport in multilayered/ 
heterogeneous systems: 

• Spin orientation is not conserved: Many sources and sinks, 
transport is 3D 

• Spin pumping  
• Spin relaxation 
• Spin accumulation 

Metrology of novel spin current sources: 
• Spin Hall Effect—spin currents from nonmagnetic 

materials 
• Spin Seebeck effect—spin currents driven by 

thermal gradients 

Need to be understood for 
efficient spin circuit design 



Other Spintronics Efforts at NIST-Boulder. 
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RF-STM project (Mitch Wallis and Pavel Kabos) 
• Calibrated RF-STM measurements at variable 

temperatures, high frequencies, with magnetic 
contrast: Potential to image spin waves, spin 
currents, doping profiles… 

Nanomagnetism project (Justin Shaw, Hans Nembach, 
Tom Silva) 

• FMR measurements of arrays and individual 
isolated magnetic elements 

• Measurements of spin pumping, spin diffusion 
 



Summary. 
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• Spin-based devices have unique metrology challenges 
 

• Reliability and speed of ST-MRAM devices depend on 
magnetization dynamics 
• Potentially complicated dependence on device 

nanostructure 
 

• STOs are current tunable, nonlinear, microwave 
oscillators 
• Potential applications in NonBoolean architectures, 

microwave circuits 
• Development depends on understanding nonlinear 

device dynamics, coupling, & noise 
 

• Future devices will employ pure spin currents: New 
metrology challenges? 



Bonus Slides! 
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STOs: Mutual Phase Locking 
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Spin current induces local oscillation of M: couples to 
surrounding medium  “spin waves” 

nanocontact 

radiating 
spin-waves e- 

precessional  
excitation 

2r 

• Mechanism for coupling 
oscillators without additional 
wiring layer 

• Additional source/sink for 
dynamics 

ac out Ic1 

Ic2 

400 nm 
Magnetic 
interaction 



Detection of Spin Waves Using 
Nanocontact as Detector 

250 nm 
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Spin waves radiated from one contact to the other:  coupling mechanism? 
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Individual Contact Outputs: 
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…bias contact c1, sweep current through c2 
 Look for interactions between oscillators 
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Both contacts measured 

• Devices lock outputs from 9+-10 mA 
• Powers combine coherently: 

Need to understand mechanisms 
setting relative phases 

c1 output 
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Nature, Sept. 2005, PRL 2006. 32 



STOs: Probes of local magnetism 
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STOs: Probes of local magnetism 
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•ST-FMR shows only small 
variations with field direction 


