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Outline

Ferromagnet-based Spintronics.
* Ferromagnets: Spin filters
e Spin torque: Fundamental interaction between spin
current and ferromagnet

Device-level microwave measurements: Probe of
structure/function.
* Spin torque MRAM
* Correlate error rates to spectral behavior
e Spin Torque Oscillators
* Phase locking, frequency noise
e STOs as local probes of magnetization

Outlook & Future Challenges.



Spin Transfer: Angular Momentum Absorption
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Magnetization Dynamics: Spin Torque
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Slonczewski, 1996




What does Spin-torque do?

Sign of torque depends on direction of current flow: causes motion

of the magnetization, depending on the magnetic configuration
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Spin torque Magnetic RAM.

...Potential nonvolatile RAM: Need to determine details of switching

Current
“Nanopillar” Schematics: l

Free layer ¢mmmmm) RCEUCDCLLY
MgO (1 nm)
CoFeB (2.5 nm)

N

Fixed layer ——
(SAF) N
150 nm —

50 nm

CoFe (2.5 nm)

* Tunnel junctions: large MR (70%)
v & spin polarization

‘  Measure write error rate (WER) for

/ large numbers of events: compare to
read read two state (single domain) model

reset . - -
write pulse  reset * Also can measure real-time switching

(5-100ns)  pulse trajectory (R vs. t) 6

t




ST-MRAM: Write Error Rate Variations
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ST-MRAM: Resonance Spectra

* Inject AC current, measure device
response vs. f, H
* Determine resonant modes of device

ST-ferromagnetic
resonance (ST-FMR):
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ST-MRAM: Spectra vs. Voltage Bias

Spectra of anomalous devices are function of voltage bias

0 mV bias 300 mV bias
Mixing Mixing
s Voltage (uV) 1.4+ = Voltage (uV)
21
11
0.15
1.2 1 -0.85
-1.9
-2.9
-3.9
1.0 1.0 1 -4.9
—~~ — . '5.9
E E B
1 = Kk
= = -7.8
iL 0.8 L 0.8 -
0.6
S — 0.4 4— —
5 10 15 20 25 30 5 10 15 20 25 30

Frequency (GHz) Frequency (GHz)

Higher order modes excited at high bias: become similar in magnitude to
fundamental mode
Deviation from single domain spectra: deviation of WER

Linear response not solely responsible for variations: Requires
measurements of full devices

*Mode patterns determined with OOMMF micromag. simulator (oommf.nist.gov)



Spin Torque Oscillators

Current concentrated by electrical
lead: Magnetization is unpatterned
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Spin Torque Oscillators

Current concentrated by electrical

lead: Magnetization is unpatterned 19
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* DC curren’E induces microwave
precession

* Frequency tunable with current

* Line widthsin 1-100 MHz range
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STOs: Metrology Challenges (i.e., Why?)

Quantifying nonlinear coupling of STOs § currents

via currents, fields, and spin waves, to -

enable large-scale arraying—e.g., bio-

. . . Spin waves
inspired NonBoolean architectures* 1 ‘

Understanding details of
oscillations (line width, frequency,
phase noise): dependence on

nanoscale (magnetic) structure,
defects, effects on phase locking

power (pW)

Measurements are of magnetic devices at nanometer scales,

at frequenues >10 GHz * Collab. with Intel, Notre Dame, Pitt., others



Injection Locking—CW microwaves
Inject AC spin current at f = 20.96 GHgz, tune f___:
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* Device locks to f/2 (= 10.48 GHz)
* Width of locking range (in frequency) depends on drive amplitude



Injection Locking: Time domain

Oscilloscope

Measurement Setup
Device /\/\/\/\/\/\/\/\
DC input

output Trig
I

AC current A‘//
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I !

|
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RF
Source

10 MHz Atomic Clock

* Scope trigger coherent with microwave source:
—» Any signal not coherent with microwaves will average to zero...
determine phase vs. frequency difference



Phase and Amplitude vs. Frequency Difference

Phase vs. Bias Avg Amplitude vs Af
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 Phase changes as a function of DC bias ¢ Amplitude « time device is locked.
* Even when partially “locked” the STO

maintains well-defined phase with the
injected signal: Stochastic process



Pulsed Injection Locking: Time-to-lock

Oscilloscope
Measurement Setup

DC input

output Trig
Pulsed / '
microwaves _%%// 4000 averages |

|
Pulse Picker _

RF
Source

10 MHz Atomic Clock

* Use a “pulse picker” to trigger scope and gate RF source
 Microwaves are pulsed: 100 ns on and 900 ns off , to allow device
decoherence ( = 80 ns required)



Time Required for Locking

Locking to Pulsed Microwaves Locking Time vs. RF Voltage
- RF drive envelope 124 '. | | | | |
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° Consider”locked” When envelope ® LOCking can occur in a few 10’s of CyCIES.
reaches 90% of steady-state * Locking time varies quasi-linearly with RF.
amplitude  Consistent with Adler ~ 1/Vg..

*  Minimum Vg, required to lock agrees with
CW measurements.



Quantifying Oscillator Performance

V)=V, + &) sin[27zv,t + ¢(0) ]

* Simple method: Spectrum analyzer

- Measures power spectrum of V(t)

- But, cannot separate &(f) and ¢(7)

- May depend on measurement time

* Better method: Direct

measurement of ¢(7) or v(¢)

- Not affected by &(7)
- Power spectrum of ¢(7) or v(7)
easy to compare with theory

Refs:

Allan variance James Barnes and David Allan, 1964 (NIST)
Collected papers  NIST Technical Note 1337 (http://tf.nist.gov/general/publications.htm)
Phase noise tutorial http://tf.nist.gov/timefreq/phase/Properties/toc.htm
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Measurement of V(t)

IF out

{ . — | V/(t)

............ S,(v)

Resonance is in 5-30 GHz range: directly digitize, or mix down
to low frequency—use SA IF (70 MHz+/-30 MHz)

Amplify, digitize at 1 GS/s (low pass filter @ 150 MHz)
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Measurement of f(t): Sliding DFT
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Discrete Fourier transform segments At in length, overlapping
At/2 to generate 1[t):
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Frequency Noise Spectra
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STO: Probe of local magnetic environs

STOs respond to local (nanoscale) net effective field: Sum of

external, current- and spin-induced, and local anisotropy

fields
Applied field

Oersted field Magnetic anisotropy

...Device/materials physics challenge: Controlling these fields to

produce desired functional behavior
22



STOs: Mutual Phase Locking

Spin current induces local oscillation of M: couples to
surrounding medium =2 “spin waves”

* Mechanism for coupling oscillators
without additional wiring layer

e Additional source/sink for
dynamics: Larger effective volume

nanocontact

radiating
fpin-waves

precessional
excitation \

ol

Magnetic
interaction

..Bias |, sweep [ 4



STOs: Mutual Phase Locking

Spin current induces local oscillation of M: couples to
surrounding medium =2 “spin waves”

Icz ’ 17

cl output

Magnetic
Interaction
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Power (W)
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Frequency (GHz)

8 9 11
* Contacts phase lock when f, approaches c1 Current (mli\
: P : fl PP f2 Locking range]
 Combined power increases: phase coherence

* Line width narrows when locked: Larger effective volume




Future directions.

Metrology of spin currents & transport in multilayered/
heterogeneous systems:

Spin orientation is not conserved: Many sources and sinks,
transportis 3D

Sp!n pumplr)g Need to be understood for
Spin relaxation efficient spin circuit design
Spin accumulation

Metrology of novel spin current sources:

Spin Hall Effect—spin currents from nonmagnetic
materials

Spin Seebeck effect—spin currents driven by
thermal gradients



Other Spintronics Efforts at NIST-Boulder.

RF-STM project (Mitch Wallis and Pavel Kabos)
 (Calibrated RF-STM measurements at variable
temperatures, high frequencies, with magnetic
contrast: Potential to image spin waves, spin
currents, doping profiles...

Nanomagnetism project (Justin Shaw, Hans Nembach,
Tom Silva)
* FMR measurements of arrays and individual
isolated magnetic elements
e Measurements of spin pumping, spin diffusion



Summary.

Spin-based devices have unique metrology challenges

Reliability and speed of ST-MRAM devices depend on
magnetization dynamics
* Potentially complicated dependence on device
nanostructure

STOs are current tunable, nonlinear, microwave
oscillators
e Potential applications in NonBoolean architectures,
microwave circuits
* Development depends on understanding nonlinear
device dynamics, coupling, & noise

Future devices will employ pure spin currents: New
metrology challenges?



Bonus Slides!



STOs: Mutual Phase Locking

Spin current induces local oscillation of M: couples to
surrounding medium =2 “spin waves”

 Mechanism for coupling R
oscillators without additional  precessional radiating

wiring layer excitation \ spin-waves
e Additional source/sink for

dynamics
ICZJ ’

400 n

Magnetic
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Icl’ l ac out



Detection of Spin Waves Using
Nanocontact as Detector

Measured output from
detector contact

Output from precessing 0))e
(emitter) contact
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Spin waves radiated from one contact to the other: coupling mechanism?



Individual Contact Outputs:

contact c1 alone contact c2 alone
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Bias point

...bias contact c1, sweep current through c2
— Look for interactions between oscillators

31



Mutual Phase Locking: Spectra

c1 output

Both contacts measured

17
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e Devices lock outputs from 9*-10 mA
e Powers combine coherently:
Need to understand mechanisms ¢ gytput
setting relative phases

Frequency (GHz)

Nature, Sept. 2005, PRL 2006.
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STOs: Probes of local magnetism

Oscillator response is a function of
field direction
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STOs: Probes of local magnetism

Oscillator response is a function of

field direction Ai:
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*ST-FMR shows only small
variations with field direction
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