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Driving Requirements For Prognostics - How
Far In The Future Do We Need __tp Pred_ict?




ARL is a Navy University Affiliated Research Center at
the Pennsylvania State University

- : :
PENNSTATE Established in 1945 by the Navy post WW I

i) ARL ® Technology Areas
w — Undersea Weapons — Comms and Information
Delvering advanced science, | — Undersea Vehicles/UUV’s - Power and Energy

technology, and systems to
i — Hydrodynamics and — Navigation

 the fleet since 194
Structures . i
] o Materials/ Manufacturing
— Acoustics & Quieting

® Largest Interdisciplinar¥ Research Unit at
Penn State — 1140 faculty/engineers, staff,
students

" Classified facilities and programs to SCI

" FY 17 Funding Expenditures - $220M +

¥ ,,,, " Designated an University Affiliated Research
T Center in 1996
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PSU/ARL Mission

B Develop and transition technology solutions
— develop and demonstrate advanced S&T
- mature technology TRL 3/4/5 to TRL6/7

— transition technology to acquisition and current systems B R

— design, deploy, and test new solutions
B Cost savings for acquisition and lifecycle
- new technology solutions and open standards
— proof of concept before commitment
- design for manufacturing and affordability
- cost / performance design trade tools
B Education and Training
— filling pipeline of future engineers & scientists

- providing tools / expertise for training forces

— training manufacturers on new technology “
v~ PennState
g Applied Research 3

Laboratory



How do we set thresholds and time horizons for
predictions in diagnostics and prognostics?

* What do we hope to achieve by predicting the
failure, event, or degradation in performance?
* What’s the time between detection and the event?

* What do we need to do once we know there is
going to be a failure?

 Similar issues for vehicles, manufacturing systems,
and other “assets.”
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Objective of Predictive/Prognostics Analytics

Reduce Prediction
Uncertainty:

e Accurate remaining useful life
(RUL) estimate under
variable and unknown future
operating conditions.

* Provide the earliest predicted
failure indication relative to
the maintenance planning/
scheduling needs.
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* Isolate to a specific failure mode for a specific component to
enable the ability plan/schedule the appropriate maintenance

Va PennState before failure.
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We are all familiar with making short and long term
predictions. Consider health care:

* How long am | going to live? .

* How much long term care insurance do | need? I%:,

* Should | choose the high or low deductible health insurance -
this year?

* Do | need to buy allergy medicine this week? .

o Are the oak trees going to bloom?

o Am | planning to work outside or inside? l
o Am | planning to travel to PA, VA, TX, NM or AK?

The shorter the prediction horizon, the less
= e uncertainty in our prediction.
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There are many different drivers for health monitoring
and management — different applications have
different requirements.

 Safety — early work in helicopter HUMS
* Maintenance — use HUMS to enable condition based maintenance (CBM)
* Manning — reduce manning through CBM and PHM

* Life Cycle Cost — reduce total life cycle cost through savings in maintenance,
manning, and sustainment

* Logistics — extend savings through the enterprise by leveraging CBM and PHM
across fleets of assets

* Asset Capability Management — manage asset health by matching mission
requirements to capability

* Autonomy and Automation — enable autonomous and automated response to
changing external and internal operating conditions
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Different prognostics approaches derive their
prediction thresholds and timelines differently

Predictive &
Prognostics

Data-Driven Physics-Based
Approaches Approaches

Hybrid Hybrid Hybrid
Approach 1 Approach 2 Approach 4
o3 PennState Reference: Linxia Liao and Felix Kottig, ‘Review of Hybrid prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an
¥ Applied Research Application to Battery Life Prediction’, 2014 IEEE Transactions on Reliability, Vol.63, No.1, 1 March 2014 8
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Different prognostics approaches derive their
prediction timelines differently

Data and “learned”
models describe  Ctive & Physics models

rate and horizon . describe growth
JnOStICS rate and horizon

Data-Driven Physics-Based

Approaches Approaches

Hybrid Hybrid Hybrid
Approach 1 Approach 2 Approach 4
o3 PennState Reference: Linxia Liao and Felix Kottig, ‘Review of Hybrid prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an
¥ Applied Research Application to Battery Life Prediction’, 2014 IEEE Transactions on Reliability, Vol.63, No.1, 1 March 2014 9
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Experience/Data driven PHM Example: Brake Wear RUL

Deceleration Acceleration
Y. Brake Wear Value Per Run for Each Vehicle
e Brake Wear Value at Failure for Vehicle Type
' ' Date Since
. Vehicle Family Location Last Break e
- - Value
High Low [~ Change
Break Break
Wear » Wear No Break Wear Value 10TGJAM 1295105740 LH5-A4 ﬁgﬁ:ggﬁ:&?:ﬁ & 11/17/13
Value Value
~ ~ 10TGIAM1895105659 LHS-Ad ﬁgﬁ:ﬁgﬁ:&":ﬁa 12/01/13
BIN Time in Bin Brake :
-5 1.173 High Brake Wear Value - P KANDAHAR AIR BASE, o101/
w 2176 X v — Wear — s IAFGHANISTAN, ABS
3 13.81 —
- ) KANDAHAR AIR BASE,
= o Low Brake Wear Value V? ::e E— HEMTT-A4 AFGHANISTAN, ABS 05/16/14 >
o1 Run
0 7o2 ) KANDAHAR AIR BASE,
- —— LFUJATCGTEPZ87895 Line-Haul-A3 FGHANSTAN, ARS 08/21/14 -
2 455
3 6.067
4 0.189
s 0
"™ PennState Histogram Bins
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Experience/Data driven PHM Example: Brake Wear RUL

mmmm Brake Wear — essss= Cum.Brake Wear e Brake Failure Planning Trigger Poly. (Cum.Brake Wear)
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Minimum time
between the plan to
change brakes and
the actual repair
depends on the
nature and duration
of planned usage
Actual time depends
on parts and
maintainer
availability




Physics-based Example — Vibration monitoring

exst batween OB & 18 horzontals, 4 wel as betwean OB 4 1B vericals. Also.
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Physics-Based Example: Vibration Analysis
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Data Analytics-based Prognostics: Turbine Engine

T7 Overtemp"s
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">j PennState condition to one failure mode
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Data

Classify engine data behavior based on

operational parameters and maintenance
records across “fleet”
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Feature 3

Data Analytics-based Prognostics: Diesel Engine
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Data

Failure State
Early Signs 500 load-hours
Light Degradation 250 load-hours

Moderate Degradation 100 load-hours

Maintenance Required 0 load-hours

These technigues may improve with
more data if additional data
represents the same failure modes
and effects

May be most useful for reducing
effects of logistics delays by improving
resolution of failure timeline —
preemptive logistics.



Let’s look at a typical usage timeline for an asset:

': ;4,
o,
?

Functional Failure

Return
Normal Operation Failure Response to
al \ Y ) service

Reduced manning and total
ownership cost

Minimized down time and improved
reliability and availability

Fault Initiation
Safe Mode K bler f ti I
> Diagnose ey ena_ er 1or operationaily .
% Switch to backup responsive space and autonomic
—+ Abort logistics
T Repair/Replace
D
Q
prs Health Assessment & Prognosis
- Fault Detection ‘
v
Normal Operation Continued Operation
A
Fault Initiation Replan
Switch to backup
Repair
PennState

Applied Research
Laboratory




We need to predict failure or future state with enough
time to take the necessary action

Fault Initiation Functional Failure

Return

Normal Operation | Failure Response to

s s service
A< A

Prediction Event Atyorizon= tEvent — trredict

* What are we trying to predict?
* How much advanced knowledge do we need of the
event or change in system state?
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We need to look at what contributes to time horizon and
threshold requirements

* Fault growth rate — function of planned/actual use and health (nonlinear effect)

* Mean Time to Repair * Mean Prognostic Delay Time
oMean repair time oTime to collect data
o Personnel/facility availability oTime to compute health assessment
* Mean Logistics Delay Time oTime to generate health prediction
oTime to order materials * Mean Reconfiguration Delay Time
oTime to manufacture parts oTime to replan
oTime to ship/deliver parts oTime to retask/reschedule assets

oTime to reconfigure system(s)
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Time Horizon Calculation
Use Case #1 — No redundancy

Full Capability I Unavailable Full Capability

A Assess health and predict RU Capability
A Order parts

A Repair

A Return to Service

MPDT MLDT MTTR

)

f

AtH orizon
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Time Horizon Calculation
Use Case #2 — Redundant or Backup Systems

Full Capability I Unavailable Full Capability

A Assess health and predict RU Capability
A Replan/Reschedule/Reconfigure

WA Switch to backup system
A
|

AtH orizon
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Closing Thoughts

* We can reduce uncertainty in health predictions by
reducing the prediction time horizon

* The options to respond to degraded health or
performance affect how far ahead we need to predict
system health and capability — response time drives the
prediction horizon

* Approaches to PHM (embedded/on-platform versus
cloud-based/analytics-based) influence responsiveness
of the PHM system and therefore can also drive time
horizon requirements
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