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§ Established in 1945 by the Navy post WW II
§ Technology Areas

§ Largest Interdisciplinary Research Unit at 
Penn State – 1140 faculty/engineers, staff, 
students

§ Classified facilities and programs to SCI
§ FY 17 Funding Expenditures - $220M +
§ Designated an University Affiliated Research 

Center in 1996

– Undersea Weapons 
– Undersea Vehicles/UUV’s    
– Hydrodynamics and 

Structures 
– Acoustics & Quieting

– Comms and Information  
– Power and Energy
– Navigation
– Materials/ Manufacturing  

ARL is a Navy University Affiliated Research Center at 
the Pennsylvania State University
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STUDENT PHOTO

< Develop and transition technology solutions 
– develop and demonstrate advanced S&T
– mature technology TRL 3/4/5 to TRL6/7
– transition technology to acquisition and current systems
– design, deploy, and test new solutions

< Cost savings for acquisition and lifecycle
– new technology solutions and open standards
– proof of concept before commitment
– design for manufacturing and affordability
– cost / performance design trade tools

< Education and Training
– filling pipeline of future engineers & scientists
– providing tools / expertise for training forces
– training manufacturers on new technology

GRADUATE  EDUCATION

Laser Automated Rotor Blade Stripping JLTV COST / PERFORMANCE TRADES

JTLV PERFORMANCE / COST TRADES

Engine erosion  coatings

PSU/ARL Mission
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How do we set thresholds and time horizons for 
predictions in diagnostics and prognostics?

•What do we hope to achieve by predicting the 
failure, event, or degradation in performance?
•What’s the time between detection and the event?
•What do we need to do once we know there is 

going to be a failure?
•Similar issues for vehicles, manufacturing systems, 

and other ”assets.”
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Objective of Predictive/Prognostics Analytics
Reduce Prediction 
Uncertainty:
• Accurate remaining useful life 

(RUL) estimate under 
variable and unknown future 
operating conditions.

• Provide the earliest predicted 
failure indication relative to 
the maintenance planning/ 
scheduling needs.

• Isolate to a specific failure mode for a specific component to 
enable the ability plan/schedule the appropriate maintenance 
before failure. 5



We are all familiar with making short and long term 
predictions.  Consider health care:
• How long am I going to live?
• How much long term care insurance do I need?
• Should I choose the high or low deductible health insurance 

this year?
• Do I need to buy allergy medicine this week?

o Am I planning to work outside or inside?
o Are the oak trees going to bloom?
o Am I planning to travel to PA, VA, TX, NM or AK?

The shorter the prediction horizon, the less 
uncertainty in our prediction.
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There are many different drivers for health monitoring 
and management – different applications have 
different requirements.
• Safety – early work in helicopter HUMS
• Maintenance – use HUMS to enable condition based maintenance (CBM)
• Manning – reduce manning through CBM and PHM
• Life Cycle Cost – reduce total life cycle cost through savings in maintenance, 

manning, and sustainment
• Logistics – extend savings through the enterprise by leveraging CBM and PHM 

across fleets of assets
• Asset Capability Management – manage asset health by matching mission 

requirements to capability
• Autonomy and Automation – enable autonomous and automated response to 

changing external and internal operating conditions
7



Predictive & 
Prognostics

Experience-
Based 

Approaches

Data-Driven 
Approaches

Physics-Based 
Approaches

Reference: Linxia Liao and Felix Kottig, ‘Review of Hybrid prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an 
Application to Battery Life Prediction’, 2014 IEEE Transactions on Reliability, Vol.63, No.1, 1 March 2014

Different prognostics approaches derive their 
prediction thresholds and timelines differently 

Hybrid 
Approach 1

Hybrid 
Approach 2

Hybrid 
Approach 3

Hybrid 
Approach 4
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Predictive & 
Prognostics

Experience-
Based 

Approaches

Data-Driven 
Approaches

Physics-Based 
Approaches

Reference: Linxia Liao and Felix Kottig, ‘Review of Hybrid prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an 
Application to Battery Life Prediction’, 2014 IEEE Transactions on Reliability, Vol.63, No.1, 1 March 2014

Different prognostics approaches derive their 
prediction timelines differently 

Hybrid 
Approach 1

Hybrid 
Approach 2

Hybrid 
Approach 3

Hybrid 
Approach 4

Physics models 
describe growth 
rate and horizon

Past experience 
and doctrine 

dictate horizon 

Data and “learned” 
models describe 
rate and horizon
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Experience/Data driven PHM Example: Brake Wear RUL
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Experience/Data driven PHM Example: Brake Wear RUL
• Difference in 

thresholds are based 
on expert experience 
(safety factor, etc.).

• Minimum time 
between the plan to 
change brakes and 
the actual repair 
depends on the 
nature and duration 
of planned usage

• Actual time depends 
on parts and 
maintainer 
availability 
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• The physical relationships 
between machinery component 
(i.e. bearings, gears, shafts, etc.) 
faults and vibration 
measurements are well 
understood.
• In addition, it is also well 

understood what vibration 
frequencies are generated for 
basic imbalance, misalignment 
conditions that lead to excessive 
degradation. 

Physics-based Example – Vibration monitoring
Vibration Control Chart
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Envelope Spectrum
RMS
Kurtosis

2:00 AM: No visible damage

3:00 AM: One broken tooth, one 
cracked

8:15 AM: 8 teeth missing

5:00 AM: Two broken 
teeth

Physics-Based Example: Vibration Analysis

Growth rate 
based on 
physical model.  
Time horizon 
based on time 
to repair, 
logistics delays, 
manufacturing 
delays,
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T7 Overtemp's
Normal Run

Health Check
Normal Run

No Fault
T7 Overtemp's

1-week Prior
Rotor Lock T7 Overtemp's

1-week Prior
Spur Gear Break

T7 Overtemp's
1-week Prior

HP Compressor

Data Analytics-based Prognostics: Turbine Engine 
Data

Fault 2

No Fault

1 wk to failure
4 wk to failure
8 wk to failure

Classify engine data behavior based on 
operational parameters and maintenance 
records across “fleet”

Predict fault by understanding 
data migration from no fault 
condition to one failure mode 14
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Failure State

Early Signs

Light Degradation

Moderate Degradation

Maintenance Required

500 load-hours

250 load-hours

100 load-hours

0 load-hours

Data Analytics-based Prognostics: Diesel Engine 
Data

• These techniques may improve with 
more data if additional data 
represents the same failure modes 
and effects

• May be most useful for reducing 
effects of logistics delays by improving 
resolution of failure timeline –
preemptive logistics.
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Let’s look at a typical usage timeline for an asset:

• Reduced manning and total 
ownership cost

• Minimized down time and improved 
reliability and availability

• Key enabler for operationally 
responsive space and autonomic 
logistics

Normal Operation Failure Response

Fault Initiation

Functional Failure

Safe Mode
Diagnose
Switch to backup
Abort
Repair/Replace

Return 
to 

service

Normal Operation Continued Operation

Fault Initiation

Fault Detection
Health Assessment & Prognosis

Replan
Switch to backup
Repair

Asset Health
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We need to predict failure or future state with enough 
time to take the necessary action

Normal Operation Failure Response

Fault Initiation Functional Failure

Return 
to 

service

Prediction

• What are we trying to predict?
• How much advanced knowledge do we need of the 

event or change in system state?

Event ∆"#$%&'$(= "*+,(- − "/%,0&1-

17



We need to look at what contributes to time horizon and 
threshold requirements

• Fault growth rate – function of planned/actual use and health (nonlinear effect)

• Mean Time to Repair
oMean repair time
oPersonnel/facility availability

• Mean Logistics Delay Time
oTime to order materials
oTime to manufacture parts
oTime to ship/deliver parts

• Mean Prognostic Delay Time
oTime to collect data
oTime to compute health assessment
oTime to generate health prediction

• Mean Reconfiguration Delay Time
oTime to replan
oTime to retask/reschedule assets
oTime to reconfigure system(s)
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Time Horizon Calculation

MTTRMLDTMPDT

∆"#$%&'$(

Use Case #1 – No redundancy

Full Capability Damage 
Growth Unavailable Full Capability

Return to Service
Repair

Order parts
Assess health and predict RU Capability

#1
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Time Horizon Calculation
Use Case #2 – Redundant or Backup Systems

Assess health and predict RU Capability

#1

Full Capability #2

Replan/Reschedule/Reconfigure
Switch to backup system

Full Capability Damage 
Growth Unavailable Full Capability

MPDT

MRDT

∆"#$%&'$(

20



Closing Thoughts
•We can reduce uncertainty in health predictions by 

reducing the prediction time horizon
•The options to respond to degraded health or 

performance affect how far ahead we need to predict 
system health and capability – response time drives the 
prediction horizon
•Approaches to PHM (embedded/on-platform versus 

cloud-based/analytics-based) influence responsiveness 
of the PHM system and therefore can also drive time 
horizon requirements
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