

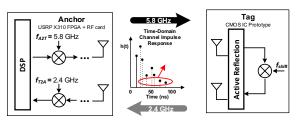

Decimeter Accurate, Long Range Non-Line-of-Sight RF **Localization Solution for Public Safety Applications**

PI: Hun-Seok Kim, Co-PI: David Blaauw, Dennis Sylvester EECS, University of Michigan, Ann Arbor, MI

Introduction

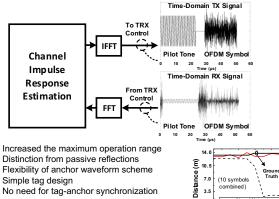
A new RF solution for location based services

- Decimeter accuracy localization with > 100m localization range
- Low cost, small size form-factor, and ultra-low power for wearable tags
- Operable in NLOS and rich multipath environments
- Rapidly deployable, low complexity infrastructure anchors



	GPS	RSSI	UWB	This work
Range	Global	<20m	<5m*	>80m
Power	High	Low	Medium	Low
Accuracy	10s m	<10 m	mm	< m
Indoor / Outdoor	Outdoor	Both	Both	Both
Need Synchronization?	Yes	No	Yes	No

*Typically for accurate locationing


System Overview

Overall system block diagram

Key Techniques

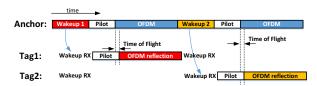
1. Active Reflection: Frequency Converting RF Echo

Office

Office

Trial Index

16.8 Aeasured


15.

No need for tag-anchor synchronization

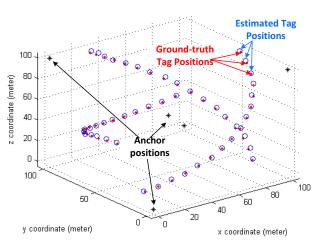
2. ToF Resolution Enhancement via Neural Network:

- 13.2 Interpolated time-domain channel impulse response
- Fully connected feedforward neural network
- Training data synthesized in Matlab (simulation)
- No need to use real-world training data
- Good improvement in multipath-rich environment

3. ULP Tag IC Design with Wakeup Receiver:

- To lower the average power to < 100μ W •
- . Reflection is activated by wakeup command
- Q-enhancement receiver for better energy efficiency
- Fully integrated with antenna in centimeter-scale form factor

4. Emergency Beacon TX:


- . Narrowband transmitter for longer range (>5km)
- Antenna and circuit co-designed
- Non-coherent modulation for TRX
- No need for off-chip crystal or PLL

5. Semantic Localization:

- · Distinguish different environments base on channel impulse response machine learning
- Identify the tag either inside or outside a specific domain

Expected Results

Matlab simulation results

System Target Specification

Tag Spec.	 Power: <100μW in average, <200mW peak power. Full-duplex frequency-conversion active reflector with 5.8GHz / 2.4GHz dual-band Built-in wakeup receiver (<100μW) to initiate localization Built-in narrowband (1kHz) transmitter (10km link distance) for emergency beacon TX 		
Anchor Spec.	 USRP X310 software defined radio MIMO, 80MHz bandwidth, -100dBm sensitivity with OFDM symbol combining 		
Algorithm	 OFDM based time-of-flight estimation MIMO processing and OFDM symbol coherent combining Neural network based localization accuracy enhancement Neural network based semantic localization Real-time 3D localization with <1ms update rate via coordination among anchors 		
System Spec.	 Localization range: >100m per dimension in NLOS Localization accuracy: standard deviation error e_{std} <30cm per dimension in NLOS Performance: real-time, 1ms refresh rate per localization fix 		