Privacy and Public Records: Perils and possible solutions of releasing public safety records

December 6, 2023

Disclaimer

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

Please note, unless mentioned in reference to a NIST Publication, all information and data presented is preliminary/in-progress and subject to change.

AGENDA

Quick Poll

3

2

Presentation

4 Live Q&A

Gary S. Howarth, II

 Physical Scientist and project manager for the Public Safety Communications Research Division (CTL) and the Privacy Engineering Program (ITL).

Analysis

Model outcomes

- Identify risk factors
- Distinguish subpopulations

Medical Records

Financial Records

Location Data

911 Calls for Service

911 Calls for Service

 Parse by water quality-related calls

Protecting PII with Redaction?

Record Number	Name	DOB	Sex	Address	Date of Visit	Reason for Visit
132313		/1979	Male	Northampton, MA 01129	/1997	Suicide attempt
318977		/1992	Female	Springfield, MA 01020	/1997	Lead poisoning
218987	z	/1994	Female	Springfield, MA 01020	/1997	Lead poisoning
156465		/1949	Male	Cambridge, MA 03129	/1997	Back pain

Can you protect PII with redaction?

Redacted data is vulnerable to *de-anonymization* attacks with auxiliary data sources

Redacted Medical Record

Diagnosis Zip o Procedure Birth Medications Sex Year of visit Ethnicity

Zip code Birth year Sex

Public Voter Roster

Name Party affiliation Address Registration date Date last voted Zip code Birth year Sex

Protecting PII with Redaction?

Redacted data is vulnerable to *de-anonymization* attacks with auxiliary data sources

87% of people in U.S. can be re-identified using 3 quasi-identifiers.

L. Sweeney. Weaving Technology and Policy Together to Maintain Confidentiality. *Journal of Law, Medicine & Ethics*, 25, nos. 2&3 (1997): 98-110.

L. Sweeney. Simple Demographics Often Identify People Uniquely. Carnegie Mellon University, Data Privacy Working Paper 3. 12 Pittsburgh 2000.

Know when and where what taxi was entered? NIST

KATHERINE HEIGL

OCTOBER 4, 2013 • 1:21 PM - 1:40 PM 80 N. MOORE ST. TO 421 8TH AVE \$14.50 FARE • \$3.62 TIP • ©WENN

J. Trotter. *Public NYC Taxicab Database Lets You See How Celebrities Tip.* Gawker. 14 Oct 2014.

Know when and where what taxi was entered? NIST

Donor list of the Llama Freedom Foundation

Name	Age	Town	Income	Ethnicity or race	Religion
Bertram Wooster	31	NYC	900k	White	Anglican
Francis Hu	39	NYC	40k	Asian	none
Ollie McOld	119	NYC	60k	Black	Baptist
Lela Fox	44	NYC	70k	Aust. Aboriginal + Uyghur	Islam
Mohammed Abas	55	Tiny (pop. 20)	250k	Arab	Sunni
Bill Kirkland	45	Tiny (pop. 20)	100k	White	Baptist

Aggregate Metric	Original	Redacted
Mean Age	55.5	38.3
Mean Income	237k	346k

Practically all information is identifying.

Field suppression, redaction, and *anonymization* techniques <u>limit utility</u> and may be <u>highly vulnerable</u> to attack.

Reidentification attacks fuel:

- Discrimination, abuse, violence against minorities
- SWATing
- Predatory marketing, phishing, and cons
- Distrust of information collection programs

Adding noise to protect privacy

Adding noise to protect privacy

New Message Cancel
To: mom

• Phones makes suggestions.

- Tech companies collect feedback.
- Some collections involve privacy noise.

Gary always chooses 😭 to represent 'sleep.'

Gary Selects	Phone transmits feedback			
ţ en	ţ.			
ien.	zz (noise)			
i-	ţ.			
i-	ţ.			
t em	🔅 (noise)			

Sometimes the phone adds noise creating privacy (plausible deniability).

+		I'm going to sleep							
	"sleep	o″		sleep	over	1		U	zzzZ
q	W	е	r	t	У	u	i	0	р

Adding noise to protect privacy

Phone provider can still analyze the noisy data for meaning

Sensitive survey examples:

- Have you ever under-reported income on your taxes?
- What's your HIV status?

Privacy-utility trade off

From Liu et al. "Privacy-Preserving Monotonicity of Differential Privacy Mechanisms." 2018.

Privacy-utility trade off

Remember, Gary <u>always</u> chooses 🚝

Selection frequency

'sleep' → 🚌

Differential privacy is:

- Rigorous mathematical definition of privacy
- A framework to add privacy noise

Differential privacy is not:

- A specific algorithm
- Silver bullet
- Bogie man

ORIGINAL DATA

Person	Age	Income	State
01	24	31,000	СО
02	88	45,000	NM
•••	•••	•••	
O450	11	0	СО

SYNTHETIC DATA

Person	Age	Income	State
S1	44	51,151	СО
S2	22	33,232	СО
S450	35	12,223	NM

Aggregate Metric	Original	Synthetic
Mean age	44	44
Mean Income	51,231	51,244
People in CO	250	249

DP algorithm

State

NM

NM

CO

ORIGINAL DATA

SYNTHETIC DATA

Income

51,845

31,412

21,121

. . .

Person	Age	Income	State		Person	Age
01	24	31,000	СО		S1	43
O2	88	45,000	NM	\rightarrow	S2	22
				DP algorithm		
 0450	11	0	со		S499	19

Differential privacy limits how much can be learned about an individual in the data.

ORIGINAL DATA

SYNTHETIC DATA

Person	Age	Income	State
O1	24	31,000	СО
O2	88	45,000	NM
O450	11	0	СО

Person	Age	Income	State
S1	43	51,845	NM
S2	22	31,412	NM
S499	19	21,121	СО

	Origi	nal	Synthetic		
Metric	All data	0450	All data	0450	
Mean age	44	45	44	44	
Mean Income	51,231	51,345	51,244	51,243	
People in CO	252	251	249	249	

DP algorithm

DP is tunable for privacy

Smaller ε More noise More privacy Less accuracy

Less noise Less privacy More accuracy

Case study:

U.S. Census Bureau is mandated to make accurate counts of people

(U.S. Constitution Article I, Section 2)

U.S. Census Bureau is required by law to protect respondent confidentiality at every stage of the data lifecycle with *criminal penalties* for violations

"Differential privacy is the best science available to protect 2020 Census respondent confidentiality while minimizing the impact on statistical validity."¹

1. Disclosure Avoidance and the 2020 Census Redistricting Data, U.S. Census Bureau

Big Questions of Differential Privacy?

- What types of data can we successfully de-identify?
- How much noise must we add?
- Are the noisy data still useful / accurate?
- Are the output data actually private?
- Are the noisy data accurate for all subgroups in the data?

NIST gave Competitors:

- training data
- basic, 'baseline' algorithm
- scoring methodology
- public leaderboard

Competitors gave NIST:

- deidentified data
- new, innovative algorithms
- mathematical proofs their algorithms were DP

NIST Innovates: 2019 Synthetic Data Challenge

Public leaderboard within a match (simulated example)

Progressive Metrics

NIST Innovates: 2019 Synthetic Data Challenge

Concept Paper	Match #1	Match #2	Match #3	Open Source
1st place \$15k	1st place \$10k	1st place \$15k	1st place \$25k	Additional \$4k/team
2nd place \$10k	3rd place \$5k	3rd place \$5k	3rd place \$10k	
3rd place \$5k	4th place \$2k 5th place \$1k	4th place \$3k 5th place \$2k	4th place \$5k 5th place \$3k	
People's Choice 2 x \$5k	Progressive 4 x \$1k	Progressive 4 x \$1k	Progressive 4 x \$1k	
(\$40k)	\$29k	\$39k	(\$62k)	(\$20k)

Acknowledgements:

- Terese Manley, NIST PSCR, Prize Manager
- Christine Task, Knexus Research, Technical Lead

https://doi.org/10.6028/NIST.TN.2151

NIST Innovates: 2020 Temporal Map Challenge

Sprint 1

Baltimore 911 Incidents Highly variable PS data Training data: 2019 Evaluation data: 2016 & 2020

Sprint 2

American Community Survey (US Census) Complex demographic information Training data: IL + OH Evaluation data: NY + PA & NC+SC+GA

Sprint 3 Chicago Taxi Rides Linked trip information Training data: 2019 Evaluation data: 2016 & 2020

Temporal Map Challenge Outcomes

Average score (both data sets) bootstrap distribution

Score (higher better, 1000 = max)

Temporal Map Challenge Outcomes

epsilon = 10.0

benchmark on 40% _ subsample of taxis							2016
N-CRiPT- [1]						 ⊢→	
Minutemen-4 [2]					I	⊢→	Increase vs. 40% subsample
DPSyn3B [3]-					1	+	
jimking100 [4] -				H	ł		
GooseDP-PSA3 [5]				1			
DP Duke Team [6]							
30	o 400	50	00	600	700	800	900
			Score (highe	er better, 1000	= max)		

37

Temporal Map Challenge Outcomes

About Research Portfolios

- Funding Opportunities
- Open Innovation Prize Challenges
- Current and Upcoming Prize Challenges
- Past Prize Challenges
- 2021 Mobile Fingerprinting Innovation Technology Challenge
- 2021 First Responder UAS + Triple Challenge
- 2020 CHARIoT Challenge
- 2020 First Responder UAS Endurance Challenge
- 2020 Enhancing Computer Vision for
- Public Safety Challenge
- 2020 Automated Stream Analysis for Public Safety Challenge
- 2020 Differential Privacy Temporal Map Challenge

2020 Differential Privacy Temporal Map Challenge

f in 🎔 🗖

The NIST, PSCR Differential Privacy Temporal Map Challenge ran from October 2020 through June 2021 awarding \$129,000 in cash prizes. The goal of the challenge was to seek innovative algorithms to de-identify public safetyrelated data with a privacy guarantee. The challenge also sought novel methods of evaluating the quality of synthetic data.

You can try out your own solution using <u>SDNist</u>, an open source Python implementation of our data and scoring metrics.

The challenge was highly successful with more than 70 unique algorithms submissions across all three sprints of the challenge. Four of those algorithms have been open sourced (links in winners table below). Three solutions participated in the Development Contest, where teams were coached by NIST experts to improve the robustness and documentation of their code, creating easyto-use implementations of sophisticated differential privacy algorithms.

The challenge was implemented by <u>DrivenData</u> with assistance from <u>HeroX</u>. Christine Task from <u>Knexus Research Corporation</u> served as the program's technical lead. <u>Gary Howarth</u> served as the prize manager.

"NIST temporal map challenge"

Acknowledgements

- Dr. Christine Task, Knexus Research, Technical Lead
- John Garofolo, NIST ITL, Portfolio Lead
- DrivenData and HeroX

Collaborative Research Cycle (CRC)

NIST privacy prize challenges have:

- Provided essential proof-of-concept experiments
 Accelerated practical synthetic data generating techniques
 Expanded the audience for and consumers of differential privacy

NIST CRC seeks to:

- Expand the scope and breadth of synthetic data evaluations
- Compare different algorithms on the same underlying data
 Provide a venue for cooperation

Data Features (excerpts of American Community Survey Data):

Feature Name	Feature Description	Feature Name	Feature Description
PUMA	Public use microdata area code	INDP	Industry codes
AGEP	Person's age	INDP_CAT	Industry categories
SEX	Person's gender	EDU	Educational attainment
MSP	Marital Status	PINCP	Person's total income in dollars
HISP	Hispanic origin	PINCP DECILE	Person's total income in 10-
RAC1P	Person's Race		percentile bins
NOC	Number of own children in household (unweighted)	POVPIP	Income-to-poverty ratio (ex: $250 = 2.5 \text{ x poverty line}$)
NPF	Number of persons in family (unweighted)	DVET	Veteran service connected disability rating (percentage)
HOUSING TYPE	Housing unit or group guarters	DREM	Cognitive difficulty
OWN RENT	Housing unit rented or owned	DPHY	Ambulatory (walking) difficulty
	Population density among	DEYE	Vision difficulty
DENSITY residents of each PUMA		DEAR	Hearing difficulty 4

Data PUMA and Postcard Descriptions: Massachusetts Dataset

Postcard Descriptions

These PUMA from North and East of Boston, Massachusetts include suburbs that began as small towns in the 17th century, historically working-class neighborhoods, historically wealthy neighborhoods, and rapidly growing newer communities connected to the tech industry.

Data PUMA and Postcard Descriptions:

Texas Dataset Postcard Descriptions

These PUMA from South and West of Fort Worth Texas include a selection of urban, suburban and rural communities—some communities predate Texas joining the United States. Their economies draw from a wide variety of sectors including agriculture, industry, military, business, and entertainment (museums, theme parks, sports). Railroads, and then highways, have played a major role in how these communities have grown.

Data PUMA and Postcard Descriptions:

National Dataset Postcard Descriptions

PUMA	40-00200: Cherokee, Sequoyah & Adair Counties
36-03710: NYC-Bronx Community District 1 & 2Hunts Point, Longwood & Melrose	13-04600: Atlanta Regional CommissionFulton County (Central)Atlanta City (Central)
06-07502: <u>San Francisco County (North & East)North Beach</u> & Chinatown	29-01901: <u>St. Louis City (North)</u>
26-02702: Washtenaw County (East Central)Ann Arbor City Area	08-00803: Boulder County (Central)Boulder City
06-08507: Santa Clara County (Southwest)Cupertino,	17-03529: <u>Chicago City (South)South Shore, Hyde Park,</u> <u>Woodlawn, Grand Boulevard & Douglas</u>
Saratoga Cities & Los Gatos Town	38-00100: West North DakotaMinot City
32-00405: Las Vegas City (Southeast)	19-01700: Des Moines City
51-01301: Arlington County (North)	51-51255: <u>Alexandria City</u>
01-01301: Birmingham City (West)	17-03531: Chicago City (South)Auburn Gresham, Roseland, Chatham, Avalon Park & Burnside
30-00600: East Montana (Outside Billings City)	36-04010: NYC-Brooklyn Community District 17East Flatbush, Farragut & Rugby
24-01004: <u>Montgomery County (South)Bethesda, Potomac &</u> <u>North Bethesda</u>	28-01100: Central RegionJackson City (East & Central)

43

Data Evaluation Report

Data Description

Synthetic Data:

Property	Value
Filename	na_syn_b101_e4
Total Records	27188
Total Features	22

Target Data:

Property	Value
Filename	national2019
Total Records	27253
Total Features	22

The SDNist Evaluator (sdnist v2.3)

pip install sdnist

Data Evaluation Report

Data Description

Synthetic Data:

Property	Value
Filename	na_syn_b101_e4
Total Records	27188
Total Features	22

Target Data:

Property	Value
Filename	national2019
Total Records	27253
Total Features	22

Algorithms: A Sample of Four Deidentification Approaches

DP Histogram: Add randomized noise to counts

DP GAN: Add randomized noise while training an ML model to reproduce the distribution.

Differential Private Histogram ($\varepsilon = 10$)

CART: Use a sequence of decision trees to generate new values for every feature, one at a time.

CART-model Synthesis (non-DP synthetic)

PATECTGAN Differential Private GAN ($\epsilon = 10$)

Cell Suppression: Redact small counts

Cell Suppression (k = 6)

Metrics: Univariate

PINCP_DECILE: Person's total income rank (with respect to their state) discretized into 10% bins.

PINCP_DECILE: Person's total income rank (with respect to their state) discretized into 10% bins.

PATECTGAN Differential Private GAN ($\varepsilon = 10$)

PINCP DECILE: Person's total income rank (with respect to their state) discretized into 10% bins.

CART-model Synthesis (non-DP synthetic)

Cell Suppression (k = 6)

PINCP_DECILE: Person's total income rank (with respect to their state) discretized into 10% bins.

Metrics: Pairwise Correlations

Differential Private Histogram (ε = 10)

CART-model Synthesis (non-DP synthetic)

PATECTGAN Differential Private GAN (ε =

Pairwise Correlations: A key goal of deidentified data is to preserve the feature correlations from the target data, so that analyses performed on the deidentified data provide meaningful insight about the target population. Which correlations are the deidentified data preserving, and which are being altered?

The <u>Pearson Correlation</u> difference was a popular utility metric during the <u>HLG-MOS</u> <u>Synthetic Data Test Drive</u>. Note that darker highlighting indicates pairs of features whose correlations were not well preserved by the 48 deidentified data.

Metrics: Propensity

Differential Private Histogram ($\varepsilon = 10$)

CART-model Synthesis (non-DP synthetic)

PATECTGAN Differential Private GAN (ε =

Cell Suppression (k = 6)

10)

Propensity Metrics:

Can a decision tree classifier tell the difference between the target data and the deidentified data? If a classifier is trained to distinguish between the two data sets and it performs poorly on the task, then the deidentified data must not be easy to distinguish from the target data. If the green line matches the blue line, then the deidentified data is high quality. Propensity based metrics have been developed by Joshua Snoke and Gillian Raab and Claire Bowen

Metrics: Pairwise PCA

CART-model Synthesis (non-DP synthetic)

PATECTGAN Differential Private GAN ($\varepsilon =$

Cell Suppression (k = 6)

PCA Metric visually compares a synthetic data set with the original input data. It plots high dimensional data as a 2D scatterplot using the first two principal component axes; each point represents an individual in the data. Good synthetic data should recreate the shape of the original data with new points (new synthetic individuals). The plot above shows the shape of the original sensitive data; the synthetic data generators are trying to reproduce this distribution. To display more detail, we've used **red points** to highlight records that represent 50 **children** (MSP value = 'N')

Metrics: Consistency Checks

Inconsistency Group	Number of Records Inconsistent	Inconsistency Group	Number of Records Inconsisten
Age	17	Age	517
Work	0	Work	0
Housing	42	Housing	122
Differential Private Histogram (ε = 10) Inconsistency Group Number of Records Inconsistent		PATECTGAN Differ 10)	rential Private GAN (ε = Number of Records Inconsisten
Age	59	Age	0
Work	0	Work	0
Housing	0	Housing	0
-			

Age Inconsistencies: These inconsistencies deal with the AGE feature; records with age-based inconsistencies might have children who are married, or infants with high school diplomas

Work Inconsistencies: These inconsistencies deal with the work and finance features —such as high incomes while being in poverty.

Housing Inconsistencies: Records with household inconsistencies might have more children in the house than the total household size, or be residents of group quarters (such as prison inmates) who are listed as owning their residences.

CART-model Synthesis (non-DP synthetic)

Cell Suppression (k = 6)

Percent of unique Target Data records exactly matched in Deid. Data: 100%	Percent of unique Target Data records exactly matched in Deid. Data: 7.1%	Unique Exact Match Rate: This is a count of unique records in the target data that were exactly reproduced in the	
Differential Private Histogram (ε = 10)	PATECTGAN Differential Private GAN (ε =	deidentified data. Because	
Percent of unique Target Data records exactly matched in Deid. Data: 20.32%	 Percent of unique Target Data records exactly matched in Deid. Data: 48.5% 	outliers in the target data, and they still appear unchanged in the deidentified data, they are potentially vulnerable to reidentification.	
CART-model Synthesis (non-DP synthetic)	Cell Suppression (k = 6)	5	

https://pages.nist.gov/privacy_c ollaborative_research_cycle/

Welcome to the homepage of the Collaborative Research Cycle (CRC), hosted by the NIST Privacy Engineering Program

Home	Participate	Results Blog	Techniques	Archive & Tools	How to Cite

Collaborative Research Cycle

The CRC is an ongoing NIST program that provides resources for researching the behavior of deidentification (data privacy) on diverse populations.

Resources include:

- Techniques Directory
- Evaluation Reports
- Archive of Deidentified
 Data Samples

Contents:

Open Source:

- SmartNoise MST
- SmartNoise MWEM
- SmartNoise PACSynth
- SmartNoise PATE-CTGAN
- RSynthpop-CART
- RSynthpop Catall
- RSynthpop IPF
- SDV Copula-GAN
- SDV CTGAN
- SDV TVAE
- SDV Gaussian Copula
- SDV FAST-ML
- Synthcity DPGAN
- Synthcity PATEGAN
- Synthcity adsgan
- Synthcity bayesian_network
- Synthcity privbayes
- Synthcity TVAE
- Sdcmicro PRAM
- Sdcmicro K-anonymity

Commercial Products:

- MostlyAI-SD
- Sarus-SDG

SmartNoise MST

SmartNoise library implementation of MST, winner of the 2018 NIST Differential Privacy Synthetic Data Challenge. Data is generated from a differentially private PGM instantiated with

- noisy marginals. The structure of the PGM is a Maximum
- Spanning Tree (MST) capturing the most significant pair-wise feature correlations in the ground-truth data.
- Library: smartnoise-synth (Python)
- Privacy: Differential Privacy
- References:

SmartNoise MST Documentation

SmartNoise MWEM

Smartkolze library implementation of MMEM: Algorithm initialities symbolic data with nandom values and them heatwhy infines is distilution to mimin role guery results on groundtruth data. The split_libror parameter can be used to improve efficiency on larger feature sets. This approach satisfies differential phacy.

approach satisfies 1. Expressial Mehasian: Sample a query $\phi \in Q$ using the Expressial Mehasian parametrized with quales waiter Q/2 and the same fination $\kappa_i(B,q) = |q(A_{i-1}) - q(B)|$:

- Library: smartnoise-synth (Python) Privacy: Differential Privacy
- $$\begin{split} s_i(B,q) &= |q(A_{i-1})-q(B)|\,.\\ 2. \ Lepton Mechanizes: Let measurement <math display="inline">m_i = q_i(B) + Lap(27/\epsilon).\\ 3. \ Multiplicative Weights: Let A_i$$
 be a times the dis-

Let n denote ||B||, the number of records in B. Let A_0 denote n times the uniform distribution of For iteration i = 1, ..., T

Inputs: Data set *B* over a universe Number of iterations $T \in \mathbb{N}$ Privacy parameter $\varepsilon > 0$.

- tribution whose entries satisfy $A_i(x) \propto A_{i-1}(x) \times \exp\{g_i(x) \times (m_i - g_i(A_{i-1}))/2n\}$
- Output: $A = \arg_{n \in \mathbb{Z}} A_n$.

in terms of Vars. A & B & C

[Hardt, Moritz and Ligett, Katrina and McSherry, Frank, 2010]

RSynthpop CART

SmartNoise MWEM Documentation

References:

R Synthpop library implementation of fully conditional CART model-based synthesis (default synt) function). New records are generated one frequence at a time, using a sequence of decision trees that select plausible new values for each feature, based on the values synthesized for previous features. Data is synthetic, but not DP.

Library: synthpop (R)

Privacy: Synthetic Data (Non-differentially Private) References:

R Synthpop Documentation

RSynthpop Catall

Catall fits a saturated model by selecting a sample from a maltromial distribution with pobabilities calculated from the complete cross subtained on all the variabilities in the data set. This is similar to DPHittagram, but rather than using the noisy bin counts to directly generate the data, new records are sampled according to the probability distribution defined by the counts.

Library: synthpop (R)
Privacy: Differential Privacy
References:
PSynthese Catal Decumentation

CRC Workshop

December 18: 10:30 AM – 2:00PM ET

- Results of CRC submissions
- Practical lessons on DP, reidentification, and other topics
- Register and see the full agenda here:

Collaborative Research Cycle

Acknowledgements

- Christine Task (Knexus)
- Karan Bhagat (Knexus)
- Aniruddha Sen (U. Mass.)
- Dhruv Kapur (U. Mich.)
- Ashley Simpson (Knexus)

NIST Differential Privacy Guidelines

NIST Special Publication NIST SP 800-226 ipd

Guidelines for Evaluating Differential Privacy Guarantees

Authors

Joseph P. Near University of Vermont

> David Darais Galois, Inc.

Editors Naomi Lefkovitz Gary Howarth Applied Cybersecurity Division, Information Technology Laboratory, NIST

Contact me to talk about a potential pilot!

- Guidance on how to try it at home
- Internal-only sandbox to try out ideas
- Help with potential public releases

Gary Howarth gary.howarth@nist.gov

(720)-360-9158

Resources

Contact

Gary Howarth gary.howarth@nist.gov (720)-360-9158

Get Connected

Subscribe to the **NIST PSCR newsletter** at <u>nist.gov/ctl/pscr/get-connected</u>

Thank You!

