

Infrared Toolmark Imaging Forensic Applications

- Common Origin of Fired Ammunition Components
- Authentic or Counterfeit Electronic Components

Francine Prokoski President Infrared Identification Incorporated

Traditional Infrared Imaging

USES:

Nonilluminated Vision

Temperature Measurement

Spectral Analysis

- Surveillance, Night Driving
- QC, Process Control, Fire Safety, Health Monitoring
- Plume Analysis, Trace Evidence, Camouflage Detection

TECHNICAL ISSUES LIMITING USE:

Small Array Size

Shallow Depth of Focus

Strong Influence of Emissivity on Temperature Measurement

Motion Blur with Uncooled Detectors

NonTraditional Infrared Imaging

USES:

- Forensic Toolmark Detection & ID
- **Emissivity Mapping**
 - Industrial NonContact Inspection for Surface Defect at site of Thermal Anomaly
 - Medical Assessment of Wound, Incipient Infection, Adverse Reaction to Vaccination

IMPORTANCE OF TECHNICAL ISSUES:

Small Array Size - High Magnification Optics, Small Local Features Shallow Depth of Focus – CNC-Controlled Range Gated Sequences Strong Influence of Emissivity – Increases Toolmark Detection Motion Blur with Uncooled Detectors – Lock-on Toolmark Details

Emissivity Effect: Actual vs. Apparent Temperature

Plastic, Glass, and Metal Surfaces **All at the Same Room Temperature** Appear to Have Highly Detailed Temperature Variations in IR Images

Variations in Materials Different Surface Processing

Must Know ε to Calculate Actual Temperature from Apparent Temp

& is a Measure of Emission Efficiency

Function of: Distance, Atmosphere, Optics, Spectral Band, Surface Texture, Surface Geometry Relative to Camera, Material Composition, Color, Temperature, etc.

> Sample Values: Polished Aluminum ε = 0.05 (inefficient) Human Skin ε = 0.98 (efficient)

Manual Toolmarks

Variations in User's Force, Angle, Path, and Motion Affect Mark Analysis Must Link Mark to Tool or Mark to Mark 3D Nature of Toolmarks Complicates VL Imaging

Two Different Users Make Impression + Striae Marks with Screwdriver

Frequency Domain Comparison of Toolmarks Different Person, Same Tool First Swath with Tool #18 Depth Profiles – Not Aligned

FFT of Depth Profiles – Not Scale Normalized

New Slide

Identification of Manual IR Toolmarks

- Magnification is Required to View/Extract Toolmark Features
- Traditional Approach uses Visible Light Imaging
- With Ring or Oblique Light Source
- Light Variations and Artifacts Affect Reliability
- IR imaging Eliminates Lighting Adjustments and Anomalies
- Greater Image Reliability Allows For Higher Accuracy
- No Illumination Tuning Allows Automated Capture & Comparison

Automated IR Imaging and Matching of 400 Screwdriver Marks Ranked 87% of Siblings in #1 Place vs. 16% for VL Imaging

Automated Toolmarks

Primer Area of Magnum .44 cal – casing #18

VL image of breechface Impression

IR Image of breechface Impression

Automated Toolmarks

Firing Pin Details of Magnum .44 cal – caseing #18

Glock VL and IR Images

Characteristic Primer Shearing Marks from Firing Pin Aperture Details are More Clear in the IR Images

Primers

Technical Issues in Toolmark Analysis DEPTH OF FOCUS: Very Shallow

CNC Controls Focus Distance to Provide Precise Range Gating Synchronization with IR Camera Encodes Depth into Each Frame's Header 3D Rendition of Toolmark Impressions and Striations Can be Formed from 2D Slices

Selected Frames

IR Identification of Glock Casings

Automatic Generation of 1D and 2D BarCodes

Shape of FP Aperture Relative Position FP Indent Shearing Striae Left (Bottom) Shearing Striae Right (Top) Breechface Impressions Within Primer Outside Primer FP Indent Details Anomalous Marks Within Primer Outside Primer

IR Quality Control Monitoring of Glock Firearm

Define Standard Orientation; Reference Landmarks Axes Reference Inner and Outer Primer Edge Circles Center is Center of Rotation FP Aperture Rectangle is Horizontal with FP Drag to Right

CutLines 7 8 and 9 Characterize Shearing Marks CutLines 10 and 11 Locate Breach Marks Outside and FP Indent Within Rectangle

MEASUREMENTS Compared to Standard:

Circularity of CC and primer Aperture Size & Position FP Indent Location CutLine Waveforms:

Breach & Shearing

Casing Identification by Primer Sheering Code

Sibling Glock Casings

CC388 f075

CC304 f053

Compare 1D BarCodes from Vertical CutLines through Primer Sheering

Greyscale Variations Ignored

Striae Locations are Compared

Strongest 1D Match Test 96% Siblings Ranked #1

CutLine Patterns Selected by Part Design

Use of Multiple CutLines Improves Matching Chose CutLine Density to Cover Production

Concentric Rings about FP Center Compensates for Imprecise Rotation Correction Better Fit to Primer Shearing Curvature Set of Concentric CutLines Produces 2D BarCode

Linear Vertical CutLines Equal-spaced Shifted through FP Center Sensitive to Rotation Correction Set of CutLine Waveforms Produces 2D BarCode

Identification by 2D Firing Pin Code

Sibling Casings FP IR Image Frames @ Specified Focus

CC 085 FP and Barcode CC 084 FP and Barcode

2D Barcode Format Align & Difference

Reliability of Self-Generated Toolmark Codes

FP CC091 **Re-Scans** Barcode Correlation **99.6%**

FP CC090 CC091 **Siblings** Barcode Correlation **98.5%**

FP CC091 CC085 Non-Siblings Barcode Correlation 24.5%

Self-Generated IR Barcodes Provide Accurate Identification Of Toolmarks

Evaluating Match Value Algorithm

Match Value Combining FP and Sheering Comparison Results Against 600 CCs

		tan is Ta	arget		silver is	Sibling			
	TOP EIGHT MATCHES FOR TARGET								
	WITH	POSITI	BSER	VATIO	N				
Rank		1	2	3	4	5	6	7	8
Template	1072	1159	1164	1092	1160	1079	617	629	611
FeatureCount	10518	10549	10194	10436	9928	10815	10507	10651	10293
MatchCount	10518	3838	3695	3740	3345	3052	2791	2819	2664
MatchValue	1.000	0.357	0.356	0.352	0.330	0.276	0.260	0.259	0.253

In Top Positions for 600 CCs

Glock Toolmarks on Primer

VL with oblique visible light illumination

NIR with NIR illumination

IR with no illumination

Passive IR imaging generates more highly detailed Toolmarks With greater repeatability than visible light or near IR imaging

CC #15 fired from Glock 9mm Imaged with a 500 frame IR sequence:

Frame 272 has deepest firing pin impression features in focus Frame 315 has primer sheering marks in focus Fusion of the two frames is used to search reference database for a match

Firearm/Ammunition combinations that produce breechface impressions may use fusion of three frames for database searching Firing pin impressions are not fused with other feature frames in the case of Firearms whose firing pin position & orientation are not fixed

FPI, Primer Sheering, and Fused Frames from Sibling Casings fired from the same Glock

Glock A Cartridge Case #15

Glock A Cartridge Case #14

Comparison of Thermal IR Toolmark Images of Firing Pin Impressions and Primer Shearing Marks on Two Cartridge Cases fired from the same Glock

IR2IR Automated Comparisons of 262 Glock CC

TOP MATCHES TO CC1006 INCLUDE ITS 1 SIBLING IN RANK #1 WITH MATCH VALUE 0.315

		tan is Ta	arget		silver is	Sibling			
	TOP E	IGHT I	ИАТСН	IES FO	R TAR	GET			
	WITH	WITH POSITION OF SIBLINGS FROM OBSERVATION							
Rank		1	2	3	4	5	6	7	8
Template	1006	1063	1092	260	254	213	266	243	278
FeatureCount	9982	10937	10436	11699	11629	11757	10895	11370	11195
MatchCount	9982	3550	2699	2677	2669	2634	2561	2538	2519
MatchValue	1.000	0.315	0.253	0.217	0.218	0.212	0.228	0.214	0.216

TOP MATCHES TO CC1159 INCLUDE ITS 3 SIBLINGS IN RANK #1,2,3 WITH MATCH VALUES FROM 0.259 to 0.427

	TOP EIGHT MATCHES FOR TARGET									
	WITH	NITH POSITION OF SIBLINGS FROM OBSERVATION								
Rank		1 2 3 4 5 6 7								
Template	1159	1092	1072	1160	1089	1102	255	1100	256	
FeatureCount	10549	10436	10518	9928	9959	9549	10597	9886	10786	
MatchCount	10549	4532	3862	2636	2580	2458	2704	2520	2740	
MatchValue	1.000	0.427	0.360	0.259	0.253	0.250	0.250	0.249	0.248	

TOP MATCHES TO CC1016 FIND NO MATCH VALUES ABOVE 0.232 CONCLUSION IT HAS NO SIBLINGS IS CORRECT

	tan is Target		silver is Sibling							
	TOP E		ЛАТСН	IES FO	R TAR	GET				
	WITH	WITH POSITION OF SIBLINGS FROM O						RVATION		
Rank		1	2	3	4	5	6	7	8	
Template	1016	632	234	266	260	1079	214	605	638	
FeatureCount	10225	11476	11474	10895	11699	10815	12154	10688	10803	
MatchCount	10225	2769	2697	2612	2586	2576	2578	2560	2532	
MatchValue	1.000	0.232	0.226	0.233	0.211	0.232	0.199	0.234	0.228	

Performance of Match Value Algorithm

Examiner Cross-Spectral Review

Glock Sheering and BreechFace Marks in Corresponding VL and IR Images

Segment cut from IR image overlaid on VL image demonstrates Similarity of Breechface and Primer Sheering Toolmarks in VL and IR and

Simplicity of Manual Cross-spectral comparison In spite of VL Lighting Artifact and Different Resolution: **Primer Diameters:** 380 VL 320 IR

ROC Comparison of Cartridge Case Matching Based on BreechFace and Sheering Marks

Accuracy of Matching as a Function of Image Spectra: IR-IR VL-VL and Cross-Spectral IR-VL

IR-ID of Damaged Bullets

FlashCorrelation of IR Bullet Sequences:

- Same-Sequence Framewise Self-Correlation Measures Rotation Stability
- Two-Sequence Framewise Cross-Correlation Detects Suspected Siblings and Synchronizes Sequences

Bullet #1 Frame #1

Bullet #2 Frame#516

Bullet #1 Frame #1529

Bullet #2 Frame #516+1529

IR Image Sequences of Damaged BulletsVisual ImageVisual ImageBullet #1Bullet #2SigSauer 40 Speer S&W30 sec imaging per 360°

Bullet #1

Bullet #2

Conclusion

- Thermal IR Imaging is Characterized by Emissivity Effects and Shallow Depth of Focus
- Range Gated Emissivity Maps Provide Reliable 3D Models and Extended-Focus 2D Images
- Which have been found to produce high-accuracy ID of Firearms-Induced Toolmarks
- Using fully Automated Image Capture and Compare

Francine Prokoski, President

Infrared Identification Incorporated POB 1038 Lorton VA 22199-1038 703 690 1234

