

Smart Grid and Cyber-Physical Systems

- Internet of Things and Smart Grid
- Smart Grid and Cyber-Physical Systems
- Charge to the Committee

NIST smart grid program

Internet of Things

What's new about the "Internet of Things:"

- Capacity
- Capability
- Reach

NIST smart grid program

Internet of Things - Capacity

Devices connected to the Web:

- 1970 = 13
- 1980 = 188
- 1990 = 313,000
- 2000 = 93,000,000
- 2010 = 5,000,000,000
- 2020 = 31,000,000,000

Source: Intel

NIST smart grid program

Common Technology Drivers - Examples		
	Communications	Grid
Analog → Digital	Packet Switching	Smart Grid
Capability at the Edge	Smart Phone	DER
Infrastructure as Platform	eCommerce	Transactive Energy
Oynamic Configuration	NATs/ Subnets	Customer-owned µgrids
Physical → Virtual	SDN	DACR

Smart Grid and Cyber-Physical Systems Internet of Things and Smart Grid Smart Grid and Cyber-Physical Systems Charge to the Committee

What are Cyber-Physical Systems?

- Integrated, hybrid networks of cyber and engineered physical elements
- Co-designed and co-engineered to create adaptive and predictive systems
- Respond in real time to enhance performance*

NIST smart grid program

engineering laboratory

^{*} Key metrics include: efficiency and sustainability, agility and flexibility, reliability and resilience, safety and security

Progress toward Smart Grid v1.0

- An estimated 65 million smart meters will be installed nationwide by 2015
- Electricity suppliers have committed to making Green Button energy use data accessible to more than 50 million homes and businesses
- Through ARRA investments, more than 1,000 networked PMUs will be deployed by the 2014-2015 time frame
- The rate of deployment of photovoltaic arrays grew by 41% in 2013 with PV providing 12.1 GW system-wide at the end of 2013

NIST smart grid program

21

Disruptive forces

- Increasing renewable energy investments
- Greenhouse gases
- Decreasing PV costs
- Distributed Energy Resources
- Transactive Energy
- DR-enabled thermostats, smart appliances
- Price of natural gas
- Residential scale storage
- Customer-owned microgrids
- Microturbines
- Big Data technologies
- Your example here

Charge to the Committee

Help us to envision the technology and standards foundations that:

- Ensure the landscape of disruptive forces can be forces for progress;
- Empower industry in responding to change;
- Provide the basis for sound policy-making; and
- Enable a Smart Grid of the future that provides for clean and reliable energy.

NIST smart grid program

gineering laboratory

