2007 International Conference on Frontiers of Characterization & Metrology for Nanoelectronics

Optical Characterization Methods for Identifying Charge Trapping States in Thin Dielectric Films

Jimmy Price March 29th, 2007

Accelerating the next technology revolution.

SEMATECH, the SEMATECH logo, AMRC, Advanced Materials Research Center, ATDF, the ATDF logo, Advanced Technology Development Facility, ISMI and International SEMATECH Manufacturing Initiative are service marks of SEMATECH, Inc. All other service marks and trademarks are the property of their respective owners.

SEMA

Outline:

- Introduction
- Dielectric defects and device performance
- Sub-E_g absorption measurements (SE)
- Second Harmonic Generation (SHG)
- Electric field-induced changes in E_q (SE)
- Conclusions & acknowledgements

What drives Characterization & Metrology?

In the past (CMOS & microelectronics):

- R & D
- Typical process needs (thickness, composition, etc.)

In the Future (advanced CMOS & nanoelectronics):

New metrology metrics (New gate stacks, strain, 3D, etc)

Advanced gate stacks

Strained channels

FINFETS

"Do more for less", and "The all inclusive package"

1st Observations of O₂ vacancies using SE:

An example of extending existing metrology platforms with new applications.

Potential to extend SE beyond physical characterization and towards electrical characterization!

Dielectric defects and device performance:

What are they? Anything that can trap electrons.

Conduction

Band

Valence

Band

Localized

(interband)* defect state

- O₂, N₂, vacancies and / or interstitials.
- Impurities (C, B, etc.).
- Crystal imperfections (grain boundaries, surface states).
- All are discrete localized states within the band gap.

How does this affect device performance?

- Degradation of carrier mobility.
- Charge trapping.
- increase in leakage current.

- Agrees with electrical results (i.e. less defects for thinner films)
- Agrees with theory (i.e. energy location of defects calculated by DFT)
- Also verified for other material systems (HfSiON, HfTaTiO, etc.)
- But...

Sub-E_q absorption measurements:

Sub-E_g absorption features coincidentally appear at same energy as silicon critical points!

Are we mistakenly identifying substrate effects instead of dielectric defects?

Sub-E_q absorption measurements:

- If we suspect the silicon substrate is contributing to our data, what happens if we deposit the HfO₂ on a quartz substrate:
 - » No critical points
 - » No absorption (Band gap ~ 9.0eV)
 - » Easy to characterize optically
- Therefore, any absorption observed would be solely attributed to the HfO₂ film.
- Deposited three 10nm HfO₂ films on each substrate and annealed at 700°C, 800°C, and 900°C.

- Below band gap absorption tail still present for quartz samples!
- But, Silicon absorption peaks are now absent!

Why are silicon critical point features appearing in the optical spectra of the dielectric?

SEMATECH

Outline:

Introduction

- Dielectric defects and device performance
- Sub-E_a absorption measurements (SE)
- Second Harmonic Generation (SHG)
- Electric field-induced changes in E_q (SE)
- Conclusions & acknowledgements

Second Harmonic Generation:

Second Harmonic Generation (SHG) is a non-invasive optical probe that is sensitive to surfaces, interfaces, and electrostatic fields in centrosymmetric materials.

When using a high intensity laser, a perturbative approach must be used to understand the electric dipole response and induced polarization in the medium:

$$\vec{P}(\omega) = \chi^{(1)}\vec{E}(\omega) + \chi^{(2)}\vec{E}^{2}(\omega) + \chi^{(3)}\vec{E}^{3}(\omega) + \dots$$
$$= \vec{P}^{(1)}(\omega) + \vec{P}^{(2)}(2\omega) + \vec{P}^{(3)}(3\omega) + \dots$$

Symmetry arguments restrict $\chi^{(2)}$ to be zero. But may be non-zero where symmetry is broken or E-fields are present.

SH radiation

Second Harmonic Generation (SHG):

What's SHG telling us?

- Interfacial electrostatic fields are primary contribution to SHG response.
- > These interfacial fields are modified by subtle film growth conditions (thickness, composition, and anneal temperature).
- Thermal assisted electrons from the substrate, trapped in the dielectric defect centers, are the source of these DC field.

• Does this explain the Sub- E_q SE anomalies?

- > SE data analysis uses an "un-perturbed" silicon dielectric function.
- Perhaps these interfacial electrostatic fields are affecting the silicon dielectric function, and subsequently, the SE data analysis.

Instead of measuring the direct effect of these defect states on the high-ĸ optical properties, how about trying to measuring the indirect effects imposed on the underlying silicon substrate?

Foundation of optical modulation techniques which use an externally applied electric field to induce a change in the band structure. Accelerating the next technology revolution.

• Looked at the same samples previously measured with Sub-E_a SE, SHG, and verified with electrical data.

 For each sample, measured the silicon dielectric function before and after HfO₂ deposition, and then subtracted the two.

Note, if strain were responsible for the change in the silicon dielectric function, we would observe a shift in E_{α} . In this case, all three spectra have an inversion origin at 3.375 eV (i.e. the silicon direct band gap).

If the electric field is due to the oxygen vacancy defects, then to estimate the charge trap density, σ :

 $\sigma \propto thickness \times \sqrt{amplitude}$

Thickness determined independently by SE.
Peak amplitude extracted from Δε by curve fitting.

Field induced change method also correlates with sub- E_{α} absorption and FTIR!

Example #3:

• Isolate the oxygen vacancy defects by intentionally "choking-off" the available O₂ during deposition.

• Standard = SMT best know ALD method for HfO_2 deposition.

• Condition #1 = Decreased the available flow (amount) of ozone during ALD deposition.

• Condition #2 = Decreased the ozone pulse time during ALD deposition.

Field induced change method correlates with sub-E_a absorption, SHG, and FTIR!

Conclusions:

• Exciting time for metrology! New materials, new structures, and new physics & characterization needed.

• Sub-E_g absorption measurements "see" more than just defects.

 Second Harmonic Generation "sees" only the interface, but with exceptional sensitivity. Nanotechnology is a made-for SHG problem.

 "Someone's trash is another's treasure". Interfacial electrostatic fields responsible for changes in silicon features. Identifying these changes is a potential way to extend SE applications.

Acknowledgements:

SEMATECH

Pat Lysaght Gennadi Bersuker Kevin Casey SC Song Raj Jammy Alain Diebold

UT femtosecond spectroscopy lab

Mike Downer Yongqiang An Robert Ehlert

