

Harnessing the Power of Distributed Energy Resources: Quantifying Transactive Energy Economics

Michael Gravely Assistant Deputy Director Energy Research & Development Division California Energy Commission <u>Mike.Gravely@energy.ca.gov</u> (916) 327-1370

The Future Electric Grid in California

State Energy Policy Drives Energy RD&D Investments

40,000 GWh/year	63,000Zero Net EnergyZero Net Energy Commercial Buildings GoalGWh/yearResidential Buildings GoalDouble Energy Savings in Existing Buildings Goal	Energy Efficiency
Economic DR at 5% of peak Goal	Achieve 100% of Economic Potential Goal	Demand Response
2008 2010	2013 2015 2016 2020 2025 2030	2050
11% RPS Goal	20% RPS Goal 12 GW DG Goal 8 GW Utility-Scale Goal 33% RPS Goal Require 50% RPS Goal	Renewable Energy
	10% Light- Duty State25% of Light- Duty StateOver 1 millionDuty StateDuty StateZEVs/near ZEVsVehicles be ZEVVehicles be ZEVon CaliforniaZEVZEVRoadways Goal	Transportation Energy
Greenhouse Gas Reduction	ns Reduce GHG Emissions to 1990 Level (AB 32) – Represents 30% Reduction from Projected GHG Emissions Reduce GHG Emissions 40% below 1990 Levels	luce GHG Emissions 6 Below 1990 Levels

Envisioning the Grid of the Future

Zero-Net Energy Affordable Multifamily Homes

Plug-In Electric Vehicles

Energy Efficiency Research

Renewable and Advanced Generation Research

Promoting Renewable-Based Communities

Renewable Forecasting & Modeling

Advancing Combined Heat and Power Technologies

Integrating Renewables and Improving Grid Reliability at Camp Pendleton

Converting waste to energy

Thermal Energy Storage for Concentrated Solar

Microgrids Address Different Customers Needs

University Campus Improve Reliability, Cost Savings, Be an Environmental Leader

Santa Rita jail Energy Resilience, Cost Savings, GHG Reductions

Borrego Springs Utility Grid Reliability Improvements, Respond to Customer Outages Faster, Integration of Renewables

Military Base Energy Resilience, Cost Savings, Increased Renewables

Municipal Facility Increase Reliability, Compete in Grid Markets Lower costs

Medical Hospital Increase Reliability, More Flexibility Lower costs

7

CALIFOR NIA ENERGY COMMISSION

The Role of Energy Storage in the Future

The Role of Electric Vehicles in the Future

February 2014

Electrification of the Transportation Sector: Los Angeles Air Force Base Vehicle-to-Grid Demonstration

- This is the first large-scale research project to demonstrate full V2G capability.
- The goal is for the base to use electric vehicles to co-optimize building load and participation in the California ISO's ancillary services markets.
- These capabilities will be integrated and optimized using software also being developed through the project.
- This project will allow other entities to benefit from these advances and lessons, and will help improve the value proposition of owning electric vehicles.

Energy Storage and VGI Roadmaps

Demand Response Automation

Overview of Energy Commission GFO 15-311

Advancing Solutions That Allow Customers to Manage Their Energy Demand Through The Use of Transactive Signals

Development and Use of Transactive Signals

- Focus of this solicitation was to first develop a set of transactive signals and then test how various DR projects respond to such signals
 - Specifically,
 - the technical aspects of this communication and response
 - to identify, inform and develop strategies for overcoming technical, institutional and regulatory barriers to expanding DR participation in California
 - to fund applied research and development projects that test and assess how groups or aggregations of distributed resources respond to current, planned and potential price signals.
- Awards were made in Three Categories

Category 1: DR as supply-side in CAISO Markets

- BMW of North America, LLC
 - Total Charge Management: Advanced Charge Management for Renewable Integration \$3,999,900
- Center for Sustainable Energy
 - Meeting Customer and Supply-side Market Needs with Electrical and Thermal Storage, Solar, Energy Efficiency and Integrated Load Management Systems \$3,960,805
- OhmConnect, Inc.
 - Empowering Prosumers to Access Wholesale Energy Products \$3,995,028

Category 2: DR as Demand Side Resources

- Electric Power Research Institute, Inc. (EPRI)
 - Customer-centric Demand Management using Load Aggregation and Data Analytics \$3,998,587
- Alternative Energy Systems Consulting, Inc. (AESC)
 - Residential Intelligent Energy Management Solution: Advanced Intelligence to Enable Integration of Distributed Energy Resources \$3,996,597
- The Regents of the University of California (Berkeley)
 - Customer-controlled, Price-mediated, Automated Demand Response for Commercial Buildings \$4,000,000
- Universal Devices, Inc.
 - Complete and Low Cost Retail Automated Transactive Energy System (RATES) \$3,187,370
- The Regents of the University of California (UCLA)
 - Identifying Effective Demand Response Program Designs for Small Customer Classes \$2,007,875

Category 3: Development of Transactive Signal

- Electric Power Research Institute, Inc.
 - Transactive Incentive Signals to Manage Electricity Consumption (TIME): A System for Transactive Load Management \$499,997
 - This being the actual set of signals to be sent, received and evaluated for customer response by the other grant recipients

Project Background

Consumer Demand Response
 Determine prosumer interest in a third-party DR market

- Quantify how much energy load shifting can be expected under various price incentives by experimenting with behavioral and automated users
- Create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.

🏷 ohmconnect

fidental and Progriegary Information of OhmConnect, Inc.

GFO-15-074

- Goal: Develop a set of replicable operational strategies to bid distributed resources into the wholesale market as Proxy Demand Resources
- Center for Sustainable Energy (CSE)
 Prime coordinating the following subs:
 - Olivine: Demand response provider/scheduling coordinator
 - SolarCity: Providing distributed solar PV and battery storage sized 1 MW/2 MWh (DER Portfolio 1)
 - Conectric: Providing passive thermal storage at aggregated hotel sites in Southern California (DER Portfolio 2)
 - DNV GL: Data Analytics

Customers, distributed generation and storage will manage their own energy use, generation and storage

Technology of Interest | QISI iEMS

- QISI IntelligentEnergyManagementSolution
 - The web-connected hub hosts iEMS software, accesses price and weather data and communicates with & controls enddevices.
 - Machine learning algorithms optimize loads, lowering costs for consumer and the grid, ultimately resulting in significantly reduced peak loads.
- Distributed Energy Resources (Battery Storage and PV Solar) are optimized in concert with intelligent loads (Smart EV Chargers, Pool Pumps, Thermostats, Appliances).
- A demand clearing house service provides market price and situational DR signals to the iEMS, consolidates day ahead load forecasts and communicates aggregated forecasts to the CAISO to facilitate dynamic price signal iteration.

Questions?

NIST Smart Grid Program

NIST Transactive Energy Challenge Modeling and simulation for the transactive Smart Grid

David Holmberg

TE Challenge Lead, Engineering Laboratory NIST Smart Grid Program

San Jose Workshop October 20, 2016

TE Challenge Goals

1. Simulation tools and platforms

 Demonstrate how different TE approaches can improve reliability and efficiency of the electric grid to address today's grid challenges

- 2. Make use of Phase I-developed co-simulation platform, reference grid, scenarios and metrics to allow comparable results.
- 1. Develop a repository of co-simulation platform components.
- 2. Collaboration—promote collaboration among industry stakeholders.
- 3. Progress—work toward implementation of TE applications.
- **4. Communication**—provide a stage for teams to present the exciting work they've accomplished.

→ Deliver value to utilities, regulators, policy makers and other stakeholders in understanding, testing, and applying TE to meet today's grid challenges.

Timeline

- September 2015: Launch of Phase I and formation of 7 teams
- Summer 2016: Completion of Phase I team efforts, development of Co-simulation platform architecture
- September 20: Phase I Capstone meeting
- Fall 2016
 - Implementation of basic components of a co-simulation platform tool set.
 - Outreach meetings in San Jose, and NYC
- Early 2017 TE Simulation Challenge Phase II Launch.
 - Focus on TE simulation based on co-simulation platform tools, in addition to
 - Collaboration, demonstration, understanding and communication
- Collaboration site: https://pages.nist.gov/TEChallenge/ gives access to the latest documents
 - JOIN US!

TE Application Landscape Scenarios

- TE use cases (in pre-read)
 - Cover the landscape of TE applications—how we think TE can support grid operations.
 - To be combined with reference grids, environmental conditions, objectives.
 - 6 use cases:
 - 1. Peak-day DR
 - 2. Wind energy balancing reserves
 - 3. Voltage control for high-penetration distribution circuits
 - 4. Concentrated EVs
 - 5. Islanded microgrid energy balancing
 - System constraint resulting in mandatory curtailment

TE Landscape Scenarios paper abstract

- This paper presents an analysis of the transactive energy (TE) application landscape, specifically examining the *transactive process, business functions, actors* in different smart grid (SG) application domains, and *time scales* as dimensions of the landscape.
- Six high-level, operational scenarios are presented which cover the TE dimensions, and which can collectively be used to explore TE interactions.
- The paper also reviews the process that was used to analyze the TE landscape, including use case analyses, TE mind map, and a transactive agent interaction model.
- Paper is available on the SGIP.org website (white papers).

Summer progress on Co-simulation Platform

- The Results
 - Draft Technical Framework
 - Extensible Component Model
 - Canonical Experiment/Simulation
 - Core Analytics

NIST smart grid program

Phase I work as input to Phase II simulations

- Phase I was about foundational elements in preparation for a more simulation based research focus in Phase II.
 - 2 of the Phase I teams were focused on modeling and simulation framework and reference components to allow comparison of simulations.
- Phase I teams also included "what's working":
 - Business and Regulatory Models team looking at what is being done or considered today in CA, NY and elsewhere.
 - Common Transactive Services (CTS) team examining minimal set of TE services based on what's used in for established financial markets.
 - TransactiveADR team looking to add these transactive services to the industry standard OpenADR.
 - 2 TE implementations: Microgrids and Virtual PowerMatcher demo teams.
- 11 Background questions are about what works for the customer and how we measure and validate performance of systems.
 - We discover the answers to these questions by examining what has worked and is working
 - Also by modeling and simulation

Go to the TE Challenge <u>collaboration website</u> to get more information on the team efforts and participants, and to get access to work products

Consider joining/forming a team to participate in our TE Challenge Phase II. Let us know how you want to be involved – techallenge-info@nist.gov

Thank you.

NIST Smart Grid Program

Buildings and the Smart Grid

Steven T. Bushby

Group Leader, Engineering Laboratory NIST Embedded Intelligence in Buildings Program

Harnessing the Power of Distributed Quantifying Transactive Energy Resources: Quantifying Transactive Energy Economics October 20th 2016

There is no Smart Grid without Smart Buildings!

- 72% of electricity is consumed in buildings (40% commercial, 32% residential)
- As we approach national goals of net-zero energy buildings, renewable generation sources connected to buildings will become increasingly important
- As the nation migrates to electric vehicles, they will be plugged in to buildings

Buildings will no longer be a dumb load at the end of the wire. They will become an integral part of the grid.

Building Resources Potentially Available to the Grid

Buildings Can Improve Capacity Utilization

PJM Real Time Load Duration

Source: PJM (a Regional Transmission Organization part of the Eastern Interconnection grid)

Buildings Can Help Integrate Renewables

Renewable sources have their own challenges

- Intermittency
- Need for storage
- Need for power conditioning, quality, conversion systems
- Not all renewables are equally "green"

Today's Automation and Control Technology

- Industrial Ubiquitous, mature, capable but generally not configured to support grid needs
- Large Commercial
 - Installed base slow to change (20 year life)
 - BACnet the dominant technology being installed today
 - Strong trend towards greater system integration and more sophisticated control strategies
- Small Commercial
 - -Limited automation and control mostly thermostats
- Residential

-Limited automation and control - mostly thermostats

Control System Trends

PURPOSE: The purpose of this standard is to define an abstract, object-oriented information model to enable appliances and control systems in homes, buildings, and industrial facilities to manage electrical loads and generation sources in response to communication with a "smart" electrical grid and to communicate information about those electrical loads to utility and other electrical service providers.

The model will support a wide range of energy management applications and electrical service provider interactions including:

- (a) on-site generation,
- (b) demand response,
- (c) electrical storage,
- (d) peak demand management,
- (e) forward power usage estimation,
- (f) load shedding capability estimation,
- (g) end load monitoring (sub metering),
- (h) power quality of service monitoring,
- (i) utilization of historical energy consumption data, and
- (j) direct load control.

How Do You Model Device Energy Management?

Imagine modeling all devices behind the ESI as either an energy manager, energy meter, energy generator, or energy load.

Examples might be:

EMS = Energy Manager Smart Appliance = Energy Manager + Load Battery = Generator + Load Premise sub-meter = Meter
Composition of Devices from Components

NIST smart grid program

FSGIM Overview

Impact of the FSGIM

- Compatible with Green Button, OpenADR and weather information services
- Provides standard aggregations that will work in a multi-vendor environment
- Can represent load curves for predicting energy and power consumption or selecting control points

Control technology standards groups are beginning to develop technology specific implementations of the FSGIM

The Evolution of Control Technologies and TE Services Will be Driven by Market Forces

Program Type	Latency	Which Market	Automation
Frequency regulation	Less than 1 second	Day ahead	Required
Voltage support services	Less than 1 minute	Day ahead	Required
Energy support	Less than 5 minutes	Day ahead	Recommended
Demand adjustment	15 minutes	Real time	Recommended
Market Adjustment	Hour ahead	Hour Ahead	Not required
Price Management	Day ahead	Day ahead	Not required

Focus Question Part 1:

How do DER services fit with conventional market structures?

NIST smart grid program

Spectrum of Possibilities for Delivering TE Services to the Grid

Focus Question Part 2: How are DER services best delivered to the grid?

NIST smart grid program

Ensuring the Availability and Delivery of Transactive Energy Services Across Markets

Lorenzo Kristov, Ph.D. Principal, Market & Infrastructure Policy

NIST Workshop: Harnessing the Power of Distributed Energy Resources October 20, 2016, San Jose

Ideas in this presentation are offered for discussion purposes only, and do not reflect the views or policies of the California ISO.

Growth of DER and distribution-level transactive markets call for an updated whole-system grid architecture.

- The electric industry at state, national and global levels is undergoing comprehensive transformation characterized by
 - Shift to renewable energy resources and away from conventional fossil-fuel generation at all scales
 - "Grid edge" adoption of diverse distributed energy resources (DER) and a trend toward decentralized power systems (e.g., microgrids)
 - Decline of the traditional centralized, one-way power flow paradigm and associated revenue models & rate structures
 - Potential for distribution-level "peer-to-peer" transactive markets
 - New roles for distribution utilities or new independent entities as distribution system operators (DSOs)
- First and foremost, the next system must be reliable and meet 21st century objectives for sustainability, resilience & efficiency
- Crucial to success will be the design of the DSO and coordination between transmission & distribution systems & markets

The DER+TE transformation is driven from the bottom up.

- DER growth is driven by customer demand & adoption
 - Customers want flexibility, control, energy services customized to their needs, resilience to disturbances, cost effectiveness
 - Local jurisdictions adopt climate action plans, pursue synergies among municipal services, seek to boost local economy, extend renewable energy and EV to less affluent communities
 - Powerful new technologies make it all feasible & economic
- The new paradigm features
 - Substantial local supply to meet local demand
 - Multi-directional, reversible flows on distribution system
 - New challenges for distribution operations, planning & interconnection
 - Multi-use DER provide services to customers, D and T systems
 - Potential for low-cost, resilient islanding & "grid defection"
 - Desire for transactive peer-to-peer markets at the grid edge
 - Bottom-up autonomous adoption => less top-down policy control

DER business models look to provide & earn revenues from services at multiple levels of the system.

- "DER" = all energy resources connected at distribution level, on customer side or utility side of the customer meter
 - Plus communications & controls to aggregate & optimize DER
- Behind the end-use customer meter
 - Time of day load shifting, demand charge management, storage of excess solar generation
 - Service resilience smart buildings, microgrids, critical loads
- Distribution system services
 - Deferral of new infrastructure
 - Operational services voltage, power quality
- Transmission system & wholesale market
 - ISO spot markets for energy, reserves, regulation
 - Resource adequacy capacity
 - Non-wires alternatives to transmission upgrades
- Bilateral energy contracts with customers, DSO & LSEs
- Peer-to-peer transactions, via distribution-level transactive markets

CAISO has several market participation models for DER.

- Demand Response ("Proxy Demand Resource" or PDR)
 - May incorporate behind-the-meter (BTM) devices such as energy storage, but can only reduce load, cannot inject energy to the grid
 - Relies on baselines to measure performance
 - Allows sub-metering of BTM storage device for DR measurement
 - Visible to CAISO only when it bids in and is dispatched
 - Future: CAISO ESDER2 initiative developing rules for bi-directional dispatch and provision of regulation service
- "Non-Generator Resource" (NGR)
 - Designed for a resource like storage that will consume or inject energy at different times; can provide regulation service
 - Visible to CAISO and settled 24x7 (comparable to a generator)
 - Does not use baselines
- Distributed Energy Resource Provider (DERP)
 - Allows aggregator to create a virtual resource of mixed DER types
 - Resource will utilize NGR model

High DER penetration requires rethinking distribution system operation and T-D interface coordination.

- Diverse end-use devices & resources with diverse owners/operators will dramatically affect key operational features:
 - Net end-use load shapes, peak demands, total energy
 - o Direction of energy flows, voltage variability, phase balance
 - Variability & predictability of net loads & grid conditions
- ✤ High DER penetration has operational impacts in two directions:
 - From D to T: DER services to customers & DSO & P2P transactions affect the transmission grid => need for accurate RT forecasting and local management of DER variability
 - From T to D: ISO market sees DER at T-D substations, has no visibility to distribution grid conditions or impacts
- DER growth also affects infrastructure planning, utility business models, ratemaking, regulatory frameworks, interconnection, …
- Central design question: What is the relationship between ISO and DSO, between wholesale market and retail transactive market?

Each entity's objectives & responsibilities drive needed tools, information & procedures.

- ISO's primary DER concern is at the T-D interface or p-node
 - Predictability/confidence re DER responses to ISO dispatch instructions
 - Short-term forecasts of net interchange at each T-D interface
 - Long-term forecasts of DER T-D impacts for transmission planning
 - May not need to know details below T-D interface with a "total" DSO ...
- DSO's concern starts with reliable distribution system operation
 - Visibility/predictability to current behavior of DER
 - Ability to modify behavior of DER via instructions or controls as needed to maintain reliable operation
 - Long-term forecasts of DER system impacts for distribution planning
 - May take on much greater responsibilities as a "total" DSO …
- DER provider/aggregator is concerned with business viability
 - Ability to participate, in a non-discriminatory manner, in all markets for which it has the required performance capabilities
 - Ability to optimize its choice of market opportunities and manage its risks of being curtailed for reasons beyond its control

System components (boxes) & structures (arrows) will determine system behavior and qualities.

Relationships of red boxes are crucial for T-D coordination with High DER.

Today the ISO and Utility DO do not exchange information or coordinate activities for real-time operation.

California ISO

New T-D coordination framework for high DER & TE must address several essential areas & functions.

Area of Activity	Challenges of High-DER	What's Needed
System operations	 Diverse DER behaviors & energy flows, esp. with aggregated virtual resources Hard to forecast impacts at T-D interfaces DSO is not in the loop on DER wholesale market transactions Multi-use DER may receive conflicting dispatches/signals (from DSO and ISO) 	 Distribution grid real-time visibility Real-time forecasting of DER impact at each T-D substation Coordination procedures between ISO, DSO and DER re wholesale DER schedules & dispatches Dispatch priority re multiple uses
T & D infrastructure planning	 Long-term forecasting of DER growth & impacts on load (energy, peak, profile) DER seek to offset T&D upgrades Distribution grid modernization needs 	 Align processes for T&D planning and long-term forecasting Specify required performance for DER to function as grid assets Modernize grid in logical stages for "no regrets" investment
System reliability & resilience	High DER may make traditional top-down paradigm obsolete	 Develop new approaches to "layer" responsibilities for reliability
Market issues: • Wholesale v retail • Monopoly v competition	 When does DER volume in wholesale market become too costly? Unclear boundary between competitive v. utility services, while utilities & insurgents pursue new business models 	 Explore "Total DSO" aggregation of DER wholesale market transactions Consider optimal scope of regulated distribution monopoly with high DER

Who knows what today? What is needed for market DER?

Information Type	ISO	DO/DSO	ISO participating DER/DERP
DER/DERP bids to ISO market	Х	Add ?	Х
DER installed capacity		Х	Х
T system topology & conditions	Х		Х
D system topology & conditions		Х	DSO inform DER
DA & RT forecasts of load + non- ISO participating DER	Add	Add	
ISO DA market schedules	Х	Add	Х
ISO RT market dispatches	Х	Add	Х
T feasibility of ISO schedules & dispatches	Ensured by ISO optimization		Ensured by ISO optimization
D feasibility of ISO schedules & dispatches		DSO assess & inform DER	DSO inform DER
Revenue meter data	Х		Х
Generation/DER telemetry	Х	Х	
System telemetry	T system	D system	

The design of ISO-DSO coordination for high DER is inseparable from design of the future DSO.

- Bookend A: Current Path or "Minimal DSO"
 - DSO maintains current distribution utility role, with enhancements only as needed to ensure reliability with high DER volumes
 - Large numbers of DER & DER aggregations participate in ISO market
 - DER engage in "multiple-use applications" (MUA) providing services to end-use customers, DSO and wholesale market
- Bookend B: "Total DSO"
 - DSO expands its role to include
 - Operation of distribution-level transactive markets
 - DER aggregation for wholesale market participation
 - Optimizing local DER to provide transmission grid services
 - Balancing supply-demand locally
 - Manage DER variability to minimize impacts at T-D interface
 - DSO provides a single aggregated bid to ISO at each T-D interface
 - Multi-use applications are simplified because DSO manages DER response to ISO dispatch

"Minimal DSO" retains current distribution utility role – reliable operation & planning – for for high DER & TE.

ISO directly integrates all DER for both transmission and distribution system operations. Requires ISO to incorporate distribution grid network model and have complete real-time distribution grid state information.

This approach is not advised due to complexity & scaling risks

Source: De Martini & Kristov, Distribution Systems in a Highly Distributed Energy Resources Future, LBNL, 2015

"Total DSO" – similar to an ISO at distribution level – is the most robust & scalable model for TE.

DSO directly integrates all DER for Local Distribution Area for each T-D Interface (e.g., LMP pricing node) and coordinates T-D interchange with TSO, so that ISO sees only a single resource at each T-D interface and does not need visibility to DER. DSO manages all intra-distribution area transactions, schedules and energy flows.

DSO coordinates a single aggregation of all DER at each T-D interface

Source: De Martini & Kristov, Distribution Systems in a Highly Distributed Energy Resources Future, LBNL, 2015

The choice of DSO model implicates several key power system design elements.

Design Element	Minimal DSO	Total DSO
Market structure	Central market optimization by ISO with large numbers of participating DER	DSO optimizes local markets at each T-D substation; ISO market sees a single virtual resource at each T-D interface
Distribution-level energy prices	Locational energy prices based on LMP plus distribution component (e.g., LMP+D)	Based on value of DER services in local market, including LMP for imports/exports
Resource/capacity adequacy	As today, based on system coincident peak plus load pocket & flexibility needs; opt-out allowed for micro-grids	Layered RA framework: DSO responsible for each T-D interface area; ISO responsible to meet net interchange at each interface
Grid reliability paradigm	Similar to today	Layered responsibilities; e.g., DSO takes load-based share of primary frequency response
Multiple-use applications of DER (MUA)	DER subject to both ISO and DSO instructions Rules must resolve dispatch priority, multiple payment, telemetry/metering issues	DER subject only to DSO instructions, as DSO manages DER response to ISO dispatches & ancillary services provision
Regulatory framework	Federal-state jurisdictional roles similar to today	Explore framework to enable states to regulate distribution-level markets
Comparable to existing model	Current distribution utility roles & responsibilities, enhanced for high DER	Total DSO is similar to a balancing authority

DER growth & TE trigger other design & policy questions for optimal whole-system performance.

- Open-access structure for distribution system operators (DSOs)
 - Non-discrimination in distribution services, resource interconnection, infrastructure investment, real-time re-dispatch as needed
 - Is an independent DSO needed? Or can today's utility DO be effectively firewalled into a regulated "wires & markets" operator and competitive affiliate offering retail services?
- Possible new boundary definition for federal-state jurisdiction
 - Could states regulate "sales for resale" that occur within a local transactive market without using transmission?
- Could reliability responsibilities be layered?
 - "Total DSO" aggregates all DER & customers below a T-D substation and submits a single virtual resource to ISO at the interface
 - ISO responsible for system reliability only to the T-D interface
 - DSO responsible from T-D interface to the customer meter —
 - A micro-grid takes responsibility for its own reliability, and will island if grid supply is limited or interrupted

Grid architecture tools enable a whole-system approach to electric system transformation.

External context:

Ecosystem & resource constraints; global demographic & economic trends & conditions; technological advances & availability; geopolitics

Desired electric system qualities:

Reliable & safe operation; cyber/physical security; resilience to disruptive events; environmental sustainability; customer & community choice; affordability & access; financeability

Today's ISO & UDC roles & responsibilities affecting T-D interfaces

Transform into New ISO-DSO T-D interface coordination framework for high DER

Policy context:

Regulatory framework; industry structure; markets & market designs; energy & environmental policies & mandates

The future grid may be a layered hierarchy of optimizing sub-systems.

- Each tier only needs to see interchange with next tier above & below, not the details inside other tiers
- ISO focuses on regional bulk system integration while distribution utility coordinates DERs
- Layered control structure reduces complexity, allows scalability, and increases resilience & security
- Fractal structure mimics nature's design of complex organisms & ecosystems.

Additional resources

- L. Kristov, P. De Martini, J. Taft(2016) "Two Visions of a Transactive Electric System" (IEEE Power & Energy Magazine, May-June 2016): http://resnick.caltech.edu/docs/Two_Visions.pdf
- * P. De Martini & L. Kristov (2015) "Distribution Systems in a High Distributed Energy Resources Future: Planning, Market Design, Operation and Oversight" (LBNL series on Future Electric Utility Regulation):https://emp.lbl.gov/sites/all/files/FEUR_2%20distribution%20systems%20 20151023.pdf
- L. Kristov (2015) "The future history of tomorrow's energy network" (Public Utilities ** Fortnightly, May 2015): http://www.fortnightly.com/fortnightly/2015/05/future-historytomorrows-energynetwork?page=0%2C0&authkey=afacbc896edc40f5dd20b28daf63936dd95e38713e9 04992a60a99e937e19028
- L. Kristov & P. De Martini (2014) "21st Century Electric Distribution System ** **Operations**": http://smart.caltech.edu/papers/21stCElectricSystemOperations050714.pdf
- JD Taft and A Becker-Dippmann, Pacific Northwest National Laboratory, Grid ** Architecture, January 2015, http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24044.pdf

Thank you.

Lorenzo Kristov <u>LKristov@caiso.com</u> Market & Infrastructure Policy

Page 20

NIST Smart Grid Program

Breakout #2: Ensuring Availability & Delivery of TE Services

Avi Gopstein

Smart Grid Program Manager, NIST

Harnessing the Power of Distributed Energy Resources October 20, 2016

Many applications, many customers

Electrical & Thermal Storage

6

0

11

6

Solar PV

0

0

0

0

0

0

d Response & EMS

6

0

0

	_								Dema
TE Challenge Case	Use	Value Proposition	:: MIT, 2016				ISO/	C/I/M & Industria SO/RTC	11. 0
Peak Day		ISO, DGO, Customer, IPP,					DEF	R Provide	r
		Aggregators			rce			Industria	à
Balancing/Rar	nping	ISO, Hydro, IPP, Merchants, DER, Aggregators			Sou	ent(s)	Regulated ISO/	d Utility a TSO/RTC	\$- 2
PV + Voltage 0	Control	DGO, DER, Customer				ter Segme	R	lesidentia	
EV Load		DGO, Customer				Custor	Mes	C/I/M	8
Islanded Micro	ogrid	Local DGO, Customers					Regula	Industria <>) ted Utility	
Inadequate Su	ipply	ISO(RC), DGO, Customers					In Load-serv	C/I/M 2 Idustrial 2 Ving Entit	\$- ¥
Source: NIST T	E Challe	enge					In Load-serv	ndustrial & ving Entit	k- 9
	F	igure 5-1. Illustrative Example of Coincid	ence Fa	ctor	s	Lo	ad-servin Regula	ig Entity a ted Utility	\$
	F	Hour Ending							
Solar PV		1 2 3 4 5 6 7 8 9 10 11 12 13 0% 0% 0% 0% 2% 9% 22% 32% 46% 51% 56% 57% 52	14 15 16 2% 42% 31%	17 23% 1	18 1%	19 20 3% 0%) 21 5 0%	22 0%	23 2 0% 0°
CHP DR - Residential		35% 95% <td>5% 95% 95% 0% 0% 0%</td> <td>95% 9</td> <td>95% 9</td> <td>(5% 95%</td> <td>53%</td> <td>95% 9</td> <td>35% 95%</td>	5% 95% 95% 0% 0% 0%	95% 9	95% 9	(5% 95%	53%	95% 9	35% 95%
EE Small Business Lighting	Retrofit	3.6 0.7 <td>1% 72% 71%</td> <td>71% 7</td> <td>71% 6</td> <td>8% 65%</td> <td>57%</td> <td>49% 4</td> <td>40% 29</td>	1% 72% 71%	71% 7	71% 6	8% 65%	57%	49% 4	40% 29
	100%								
					\wedge				
	80%				¥,		<u>×</u>		
				¥	Б.	5	Deal		
	- %00 ge	6		Ъ.	sion		S		
	ame			S	mis		ibuti		
	2 40% —			Ź	rans		Distr	\top	$\overline{}$
	ercen			$ \mathbf{\nabla} $	Ē				
	₫ 20 <i>1</i> 0								
	0%	1 2 3 4 5 6 7 8 9 10 11 12 13 14	4 15 16	17	18	19 20	21	22	23 24
	-20% ⊥		E Small Busine	ess Ligh	ting R	etrofit			

Source: ConEdison Benefit Cost Analysis Handbook, June 2016

Table 18. Illustrative Benefit Valuation Options								
Party				Benefits	Valuation Method			
Impacted	Benefit Category		Specific Benefits		Monetization	Proxy	Multi- Attribute	
		Load Reduction &	а	Avoided energy generation	yes			
	1	Avoided Energy	b	Avoided line losses	yes			
		Costs	с	Wholesale energy market price suppression	yes			
		Demand	а	Avoided generation capacity costs	yes			
		Reduction &	b	Avoided power plant decommissioning	yes			
	2	Avoided Capacity	с	Wholesale capacity market price suppression	yes			
		Costs	d	Avoided distribution system investment	yes			
			е	Avoided transmission system investment	yes			
			a	Avoided renewable energy and energy	ves			
	3	Avoided	_	efficiency portfolio standard costs	,			
	-	Compliance Costs	Ь	Avoided environmental retrofits to fossil fuel	ves			
			-	generators	,			
			a	Scheduling, system control and dispatch	yes			
Utility			b	Reactive supply and voltage control	yes			
Customers	4	Avoided Ancillary Services	C	Regulation and frequency response	yes			
			d	Energy Imbalance	yes			
			e	Operating reserve - spinning	yes			
		Utility Operations Market Efficiency	t	Operating reserve - supplemental	yes			
	5		a		yes			
			D	Reduction of market newer in wholesale	yes			
			а	aloctricity markets			yes	
	6		-	Animation of rotail market for DEP products				
	Ŭ		b	and services			yes	
				Customer empowerment			Ves	
			a	Project risk		Ves		
	7	Risk	b	Portfolio risk		ves		
			с	Resiliency		ves		
				Participant's utility savings (time addressing				
		Participant Non- Energy Benefits	a	billing, disconnection, etc.)		yes		
			b	Low-income-specific		yes		
	0		с	Improved operations		yes		
Participanto	0		d	Comfort		yes		
Participants			е	Health and safety		yes		
			f	Tax credits to participant		yes		
			g	Property improvements		yes		
	9	Participant	а	Other fuels savings	yes			
		Resource Benefits	b	Water and sewer savings	yes			
	10	Public Benefits	а	Economic development			yes	
Society		a she benents	b	Tax impacts from public buildings	yes			
,	11	11 Environmental		Avoided air emissions	yes			
1.		Benefits		Other natural resource impacts			yes	

Source: AAE Institute & Synapse Energy Economics, 2014

Market drivers & impacts can be volatile

Multiple value streams for every asset

Generation

DER Prosumer Use Cases Гуре Description An aggregation of small to large size residential Dispatchable Load customers with dispatchable load only Dispatchable Load Similar to #1 but there is no aggregation An aggregation of small to large size residential customers with dispatchable load and generation Dispatchable Load and Generation with electronic communications going through the aggregator Similar to #3 but there is no aggregation and Dispatchable Load and Generation electronic communications are direct to the DSP Similar to #3 except generation is replaced with Dispatchable Load and Storage storage Similar to #4 except generation is replaced with Dispatchable Load and Storage storage Dispatchable Load, Storage and Similar to #3 except it includes storage Generation Dispatchable Load, Storage and Similar to #4 except it includes storage

V. Simultaneous participation in retail/distribution-level programs

Many of the DER will be connected to the distribution networks and capable of providing distribution level services such as feeder unloading service to its distribution service provider. Some DER may choose to participate in NYISO's wholesale markets and provide services to the wholesale markets. The Behind-the-Meter Net Generation market rules do not permit resources to simultaneously participate as wholesale resources in NYISO markets and also in retail programs. The NYISO recognizes that there may additional value streams for DER with the simultaneous participation in the NYISO and retail programs. However, there are several operational, market, and legal challenges that must be addressed prior to allowing dual participation. An example of such a challenge is the resource potentially having multiple masters who send the dispatch/pricing signals that and may or may not be coordinated, forcing the resource to choose which signal to follow. The resource's response to these multiple signals could lead to wholesale or retail/local operational and reliability issues. Enhanced planning, operational, and market coordination would be required between the NYISO and the distribution utility. The NYISO intends to review these operational and market challenges and explore options to address them in the context of this DER roadmap.

Source: NYISO, August 2016 Distributed Energy Resource Roadmap for New York's Wholesale Electricity Markets (Draft)

NIST smart grid program

Planning + monetizing DER remain limiters

Figure 32. Mapping market places, actors, planning horizon and flexibility provision.

Table 8. List of abbreviations used in Figure 32 above.

Peak shifting, long-term congestion management	DSO, TSO
Peak shifting, portfolio optimization	BRP
Peak shifting, generation capacity adequacy	TSO
Demand adjustments, short-term congestion management	TSO/DSO
Demand adjustments, portfolio optimization	BRP
Demand adjustments, generation capacity adequacy	TSO
Balancing services, frequency control	TSO
Balancing services, frequency control	TSO
Generation adjustments, short term congestion management	TSO/DSO
Generation adjustments, short term congestion management	TSO/DSO

Most significant Challenges to supporting high penetration of DERs

Source: EPRI, 2014

grid N I S T s m a r t p r g r a m 0

D

G

н

M&V a challenge for non-supply resources

Quantifying Demand Response

NYISO DR Program Baselines

SCR Capacity - Average Coincident Load (ACL)

- Program: SCR for capacity auction
- Reference period used: Prior Equivalent Capability Period
- Average of highest twenty resource loads during top forty NYCA peak load hours in same season (Summer/Winter) of previous year

Energy Customer Baseline Load (CBL)

- Programs: EDRP, DADRP and SCR Energy
- Reference period used: Highest five consumption days of last ten "like" days where DR event or schedule did not occur
- Weather-sensitive adjustment option (in-day)

Real-time Baseline

- Program: DSASP for Reserve and Regulation resources
- Reference period used: Actual load just prior to the beginning of a real-time schedule

and limited data for measurement and verification of event response. Market Participants provide precalculated values that the NYISO uses in the process of measurement and verification and settlement.

after the event. Existing demand response programs suffer from a lack of meter data, which impacts analysis, program design, and measurement and verification capabilities.

Data Submission for Verifying Load Reduction

- SCR Capacity ACL
 - Meter data for ACL is provided to NYISO by wholesale Market Participant (utility, aggregator, etc.) at the time of the retail consumer enrollment into the SCR program
 - Meter data from event/test is provided within 75 days of the event/test
- Energy CBL (EDRP, SCR Energy, DADRP)
 - Meter data for CBL and event/test period is provided to NYISO by wholesale Market Participant
 - Within 75 days of reliability event/test
 - Within 55 days of economic schedule
- Real-time Baseline (DSASP)

fact

- Meter data is transmitted every 6-seconds via continuous twoway metering and incorporated into system operations
- Real-time meter data compared to revenue-grade meter after the

Source: NYISO, 2016

Part 1:

What are the <u>best practices</u> for measuring and validating the provision of energy services to one or more markets?

Part 2: Where are the <u>gaps</u> in measuring and validating the provision of energy services to one or more markets?

Advanced Microgrid Solutions

Tomorrow's Energy Grid

NIST Workshop: Harnessing the Power of Distributed Energy Resources A Model for Transactive Energy

Audrey Lee, Ph.D. Vice President, Analytics and Design October 20, 2016

THE ELECTRICITY GRID IS CHANGING

DEMAND RESPONSE ENERGY STORAGE

AMS won 50 MW + 40 MW Contracts to Build Energy Storage Systems for Grid Support in Southern California

Halfway Rock

AMS TARGETS LOAD CLUSTERS

AMS software platform enables storage as a service

AUTOMATED DISPATCHABLE LOAD REDUCTION

Automated performance optimization through AMS software platform in the cloud

STORAGE AS A SERVICE

- Host customers receive cost savings, operational efficiencies and market revenues with no capital outlay and no technology risk
- Utilities receive firm, dispatchable energy products that are clean, flexible and competitively priced – and keep their customers happy
- AMS recruits the host customers, negotiates the utility agreements, and manages the assets
- AMS finances the projects with a combination of fixed services fees from hosts, utility revenues, incentives and/or grants

BUSINESS MODEL

PROBLEM

Distribution grid is stressed from plant closures, capacity constraints and adoption of renewable energy

Customers bear costs of the current grid:

- Utilities face high investment in grid infrastructure
- Host customers face high demand charges

SOLUTION

Energy storage is the keystone technology for managing the modern distribution grid

AMS provides solutions to customers:

- Clean, dispatchable load reduction to utilities
 on constrained utility circuits
- Lower host customer energy expenses

Confidential and Proprietary

ANALYTICS AND DESIGN PROCESS

From Lead to Close to Operations

Confidential and Proprietary

AMS Software Platform

Enables and Optimizes Revenue Streams

- 6 Industrial water pumping and treatment facilities
- Optimization of grid and renewable generation assets
 - 3.75 MW energy storage
 - 3.5 MW solar
 - 1 MW wind
 - 3 MW biogas
 - 2.8 MW fuel cell
- 5-10% reduction in annual energy costs (~\$550,000)
- Complex tariffs: RES-BCT, Standby, Direct Access, NEM
- Custom designed

Since 1864

- 10 MW Fleet of Hybrid-Electric Buildings
- 22 class A commercial office buildings
- 10 MW of firm, dispatchable capacity to the utility
- No distribution upgrades
- Carbon neutral, zero emissions

CUSTOM-FITTED WITH ENERGY STORAGE

TESLA

IRVINE COMPANY h ADDRESS STORES BLACK & VEATCH

(約)

R.D.

EDISON

HYERD ELECTRIC ELULOUND.

This building is being equipped with advanced and y strongs systems by Hybrid Electric Buildings Technologies, L.C. or partici-

a grid modernation pract to Southim California Idean The 250kW/1,500 KWh Proverpaces from Tesu Energy will enable Investigation (page Anno Transpage) with antigr using the page Invite Company to secretarily thit entry: using the page and to battery power, providing tiel time support in the electropic

intractions between scondard near time stopping increasion trep energy on the energy of the second statements of the energy of the energy

bills.

Irvine Ranch Water District

- World's largest energy storage project with public water agency
- 7.5 MW/35 MWh Advanced Energy Storage Network
- 11 state-of-the-art water treatment facilities:
 - Water Recycling
 - Deepwater Aquifer Treatment
 - Wastewater Treatment
 - Desalter Facility
 - Pumping Stations
- 6 MW Firm Capacity to SCE

Treatment basins for cutting-edge membrane bioreactor process at Michelson Water Recycling Plant.

CSU The California State University

- Launches flagship systemwide CSU battery storage program
- Phase I projects:
 - CSU Long Beach
 - CSU Fullerton
 - Chancellor's Office
- Initial deployment: 4 MW of firm, dispatchable load reduction to SCE
- Expedited for grid support

BEYOND REAL POWER: VOLT/VAR OPTIMIZATION

- Battery Inverters are 4-quadrant inverters → can provide both real and reactive power
- Reactive power can help with voltage support (CVR) as well as manage site power factor

TIME SCALES IN ELECTRIC OPERATIONS

Copyright 2012 UC/CIEE uc-ciee.org

AGGREGATION UNLOCKS FUTURE VALUE OPPORTUNITIES

UTILITIES / GRID OPERATORS

GRID SERVICES

Firm, Dispatchable Capacity Dynamic Load Management Transmission Congestion Relief Distribution Deferral Volt/VAR Optimization Local Frequency Response Black Start Wholesale Market Products:

- Frequency Regulation
- Spin / No Spin Reserves
- Day Ahead, Real Time

Confidential and Proprietary

AMS EXECUTIVE TEAM

SUSAN KENNEDY Founder and CEO

Chief of Staff, CA Gov. Arnold Schwarzenegger Commissioner, CA Public Utilities Commission Cabinet Secretary, CA Gov. Gray Davis

> JACKALYNE PFANNENSTIEL Co-Founder and Director

Asst. Secretary of Energy, US Navy Chairman, CA Energy Commission Corporate Officer, Pacific Gas & Electric

> MARK THOLKE VP Development

VP EDF Renewable Energy, West Region GE Wind | Eurus | Green Mountain Energy

> ALAIN STEVEN Chief Technology Advisor CTO & Co-Founder, Viridity Energy

President and CEO, Alstom ESCA Corp. CTO, PJM Interconnection

> STACY LOVELACE VP Finance and Legal

VP Finance and Legal, Sensage VP Finance and Legal, Altius Education Senior/Special Counsel, Sprint

KELLY WARNER President

CEO, KEMA | CEO, Deerpath Energy | CEO, Xenergy Developed one of the first retail energy service companies in the United States

KATHERINE RYZHAYA Chief Commercial Officer

Dir. of Structured Transactions, Evolution Markets Contract Origination, Pacific Gas & Electric RBC Capital Markets | UBS Warburg

AUDREY LEE, PHD VP Analytics & Design

Advisor CPUC Pres., Smart Grid, Energy Data & Storage Fellow, US Department of Energy International Energy Agency

MANAL YAMOUT VP Policy and Markets

Dir. Government Affairs, NextEra Energy Renewable Energy Advisor, CA Gov. Schwarzenegger Assistant Secretary of International Trade, CA

WEST OWENS VP Finance and Strategy

VP Structured Finance, SolarCity Finance Manager, AES Solar US Renewables Group | Mascoma Corporation

NIST Smart Grid Program

Validating the Models for Transactive Energy

Dr. Martin J. Burns

Electronic Engineer, Engineering Laboratory NIST Smart Grid Program

Harnessing the Power of Distributed Quantifying Transactive Energy Resources: Quantifying Transactive Energy Economics October 20th 2016

TE Challenge Co-Simulation Framework

- Reason for Tiger Team Effort
- The Participants:
 - PNNL
 - Vanderbilt
 - CMU/MIT

• The Results

- Draft Technical Framework
- Extensible Component Model
- Canonical Experiment/Simulation
- Core Analytics

Why do we need a "Common Platform" for TE Simulations?

Platform Goal: to be able to understand, evaluate, compare and validate transactive energy approaches, grid operations and controls.

- Design a common platform that has well-defined interfaces and semantics such that stakeholders can use it to evaluate in their own contexts and may even plug-in their own [proprietary/confidential] models and components.
- As part of the platform we envision a library of tools & models that will be available for users to leverage existing great work from the open-source domain.
- Three collaborators may implement the common specification providing three equivalent testbeds for TE evaluations

Progression of Simulation Platform Usage

Baseline Reference Scenario Demonstrates the Model

- Simple Grid Model
- 30 Houses
- Simple market based on price curve bidding

What scale / type of grid model will meaningfully demonstrate your technology?

- Scale to achieve meaningful analysis
- Radial vs Mesh grid
- How many nodes/customers

How might you use the common platform to distinguish your capabilities?

- Compare different grids
- Compare different market models
- Compare discrete event physics and ODEs

What significant timescales should be studied?

- Capitalization impacts
- Grid stability
- Market stability/complexity -- time of use ... dynamic bidding ... aggregation pools

NIST smart grid program

TE Challenge Common Platform Specification

- A detailed technical specification that can be faithfully implemented on one or more simulation platforms comprising:
 - A set of model components with specific minimum interfaces
 - Any interface can be extended as needed for any TE Challenge Case
 - Core components can be combined and hide internal interfaces
 - A canonical simulation that allows the set of components to be orchestrated in a simulation
 - Minimal or extended models can be substituted for any component(s) and can simulated by the same experiment controller
 - A reference grid and scenario
 - A defined set of grid nodes, resources, controllers, and transactive agents and market simulation to provide a baseline for comparison
 - A minimum core set of analytics based on the data provided through the canonical simulation

Baseline Reference Scenario

30 houses divided among three phases on one distribution transformer.

The distribution system has one uncontrollable load (Resource) and one source of bulk power (Resource).

There is a weather feed of TMY3 Data for a single locale (Weather).

Each house has:

A solar panel (Resource)

Dummy Grid Load

Controllable Load (HVAC)

- A controllable load HVAC (Resource)
- A non-controllable load (Resource) ۰
- A home automation system (SupervisoryController)
- A thermostat (LocalController)
- A transactive agent (TransactiveAgent)

Resources

PV Panel (+inverter) OBulk Power

Uncontrollable Load

N I S s m a r t gri d program

0

Core Modeling Components of Common Platform

NIST smart grid program

NIST smart grid program

Through the course of the experiment/simulation the following data can be extracted from the message exchange:

- Grid power flow and voltage states
- Load profile as consumed by all loads
- Generation profiles as produced by all solar panels
- Aggregated loads by household
- Price negotiations and exchanges
- Realized pricing coordinated by loads and generators