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Summary
Goal: To develop scalable modeling tools for monitoring complex 

distributed systems and predicting catastrophic performance degradations.

• Use Discrete Time Markov Chain (DTMC):

– Develop time-inhomogeneous model of system behavior.

– Perturb DTMC transition probability matrices (TPMs) to simulate 
alternative system evolutions  Identify failure scenarios

System to 

state model

State model to

perturbable

TPM

Tasks Completed

Waiting

Discovering

Initial 

State

Tasks Failed

Negotiating

Monitoring

Initial Wait Disc Ngt Mon Comp Failed

Initial 0.9697 0 0.0303 0 0 0 0

Wait 0 0.8363 0.0673 0.0918 0 0 0.0046

Disc 0 0.0355 0.6714 0.2931 0 0 0

Ngt 0 0.4974 0.0182 0.2882 0.1961 0 0.0001

Mon 0 0 0 0.0003 0.9917 0.0080 0

Comp 0 0 0 0 0 1.0 0

Failed 0 0 0 0 0 0 1.0

Problem: To design an efficient approach for analyzing DTMCs

Solution approach: Use minimal s-t cut set analysis to identify critical state

transitions in a directed graph of a DTMC & relate to failure scenarios

‒ Introduce algorithms that reduce search space to find minimal s-t cut sets

.

Identify

failure

scenarios

 Use of combination of analysis techniques not reported before

Tasks Completed

Negotiating

Monitoring
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Outline

1. DTMC concepts and model development

2. Perturbing a DTMC to identify a failure scenario

3. Using minimal s-t cut set analysis and node 

contraction to reduce search for failure scenarios

4. Conclusions
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State model of a grid computing system
• Basis  Large-scale discrete-event simulation of grid computing system (Mills 

and Dabrowski 2008)

– Grids “rent” compute resources ‒ CPUs, memory, disk

• FOCUS: Lifecycle of a grid system task - stages in processing of grid task

‒ Each state represents phase in processing of grid task

‒ Tasks Completed – successful completion of a task 

‒ Failed State – failure to complete.
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State Diagram of 
Task Lifecycle
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Building a Discrete Time Markov Chain (DTMC) model

• Markov chains are state models where probability of transition from one 
state to another does not depend on past history: Pr(Xn+1 = x|Xn = xn,…,X1 

= x1 )= Pr(Xn+1 = x|Xn = xn) for sequence of states Xn, Xn+1, Xn+2……..

• In a discrete time Markov chain, system evolves in discrete time steps.
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• Probability state i transitions to state j, pij, is the proportion of 
total number of transitions from state i to other states, where 
fij are frequencies.  Note: if i = j, a self transition occurs.

Example:

Observe system (large scale 
simulation) and obtain 
frequencies for all transitions

 Produce Transition 
Probability Matrix (TPM)
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Result is set of TPMs for m time periods

To

• A DTMC that has absorbing states (tasks enter and never exit), e.g., 
Tasks Completed & Tasks Failed  absorbing chain. States that can be 
re-entered are transient states (Waiting, Discovering, Negotiating, and Monitoring)

F
ro

m

Initial Wait Disc Ngt Mon Comp Failed

Initial 0.9697 0 0.0303 0 0 0 0

Wait 0 0.8363 0.0673 0.0918 0 0 0.0046

Disc 0 0.0355 0.6714 0.2931 0 0 0

Ngt 0 0.4974 0.0182 0.2882 0.1961 0 0.0001

Mon 0 0 0 0.0003 0.9917 0.0080 0

Comp 0 0 0 0 0 1.0 0

Failed 0 0 0 0 0 0 1.0

8 hours

(5 time 

periods*)

Similar analysis 

640hours (321 

periods). See paper

• Key Concept: Observation of system over time yields series of TPMs for m
successive time periods  a piece-wise homogenous DTMC (Rosenberg, 

Solan, and Vielle, 2004)  captures change over time.

Transition frequencies recorded over 7200s time periods in large-scale simulation

• Summary TPMs -- weighted average of m periods

*Extra period for clean-up operations
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DTMC simulates system evolution
• Set of TPMs for successive time periods (7200 s)

• System evolves in discrete time steps (85 s per step) 

• Vector vn shows system state at any step  n:

– consists of 7 elements  one for each state

• Matrix multiplication: QT ∙ vn = vn+1 with Qi for related time period.

8-hour period

(421 time steps and 5 TPMs)

End system state vector v421 approximates result of discrete 
event large-scale  simulation, i.e., Tasks Completed
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Outline

1. DTMC concepts and model development

2. Perturbing a DTMC to identify a failure scenario

3. Using minimal s-t cut set analysis and node 

contraction to reduce search for failure scenarios

4. Conclusions
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EXAMPLE:

Decrease  p (Negotiating 
Monitoring)

Increase p (Negotiating
Waiting)

TPM perturbation

• Modifying state transition probabilities changes behavior and outcome 
of Markov simulation

 changes proportion of requests that enter Tasks_Completed
absorbing state

Tasks Completed

Waiting

Discovering

Initial 

State

Tasks Failed

Negotiating

MonitoringWait Ngt Mon

Wait 0.8363 0.0918 0

Ngt 0.4974 0.2882 0.1961

Mon 0 0.0003 0.9917
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Using critical transitions to predict failure scenarios

• Markov simulation of perturbed critical transitions over multiple time periods 
(time inhomogeneous evolution) drives down performance

• Can be related to failure scenarios: 

ex. System-wide failure of Negotiation components due to spread of 
Trojan virus  

 Predict the performance of the system being modeled.

EXAMPLE:

Decrease  p (Negotiating 
Monitoring)

Increase p (Negotiating
Waiting)
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Computability of finding critical state transitions

Unfortunately, there may be many perturbation

combinations to examine in a large problem

• Developed exhaustive perturbation algorithm (Dabrowski and Hunt 2009) which 
iterates over rows of TPM representing transient states. For all columns in 
each row,

– raises the transition probability of one column 

– lowers transition probabilities of one or more other non-zero columns in the same row.

• See (Dabrowski and Hunt, 2011) for analysis of larger DTMC in which multiple 
rows must be perturbed together to find combinations of state transitions 
which together are critical increases.

Exhaustive search over all perturbation combinations 

infeasible for larger problems
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Minimal s-t cut set analysis

• A DTMC is a directed graph

• Minimal s-t cut set: edges (transitions) that disconnect all paths from vertex 

s (Initial state) to vertex t -- desired absorbing states Tasks_Complete

Cut sets contain critical

Transitions where

perturbation reduces

performance

Single-transition cut

Multiple-transition cut

For two paths from s to t, there are 3 single-transition s-t cut sets and 2 two-
transition s-t cut sets. For related discussion of trap states, see paper.

s
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• Reduces perturbation combinations to examine to focus on most critical 

• 2x magnitude less computation time over exhaustive perturbation algorithm

• Finds all critical transitions found by exhaustive perturbation, including those 
involving > 1 state, verified by large-scale simulation (bolded and shaded entries)

 All related to failure scenarios. See (Dabrowski and Hunt 2009)

Result of applying minimal s-t cut set analysis 

 

(c) row = Negotiating

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.985 0.938 No
3 Waiting Monitoring 1.000 0.939 No
4 Discovering Waiting 0.954 0.935 No
5 Discovering Negotiating 0.957 0.935 No
6 Discovering Monitoring 0.967 0.936 No
7 Negotiating Waiting 0.923 0.931 No
8 Negotiating Discovering 0.941 0.933 No
9 Negotiating Monitoring 0.988 0.938 No
10 Monitoring Waiting 0.000 0.000 Yes
11 Monitoring Discovering 0.000 0.000 Yes
12 Monitoring Negotiating 0.000 0.000 Yes

(a)  row = Discovering

Element 
reduced0

Element 
raised

Proportion of 
Tasks Complete

s-t cut 
exists

8-hour 640-hour

1 Waiting Discovering 0.957 0.935 No
2 Waiting Negotiating 0.959 0.935 No
3 Discovering Waiting 0.939 0.935 No
4 Discovering Negotiating 0.963 0.935 No
5 Negotiating Waiting 0.894 0.933 No
6 Negotiating Discovering 0.651 0.932 No

(d)  row = Monitoring

1 Negotiating Monitoring 0.982 0.937 No
2 Negotiating Tasks Comp 0.982 0.938 No
3 Monitoring Negotiating 0.028 0.186 Yes
4 Monitoring Tasks Comp 0.980 0.949 No
5 Tasks Comp Negotiating 0.001 0.006 Yes
6 Tasks Comp Monitoring 0.002 0.016 Yes

(b)  row = Waiting

Element 
reduced0

Element 
raised

Proportion of 
Tasks Complete

s-t cut 
exists

8-hour 640-hour

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.981 0.939 No
3 Discovering Waiting 0.937 0.934 No
4 Discovering Negotiating 0.963 0.936 No
5 Negotiating Waiting 0.818 0.843 No
6 Negotiating Discovering 0.939 0.932 No

(e)  row = Initial

1 Discovering Initial 0 0 Yes
2 Initial Discovering 0.970 0.988 No

Results of 

exhaustive 

perturbation of 

TPMs and 

minimal s-t cut 

set analysis for 

the 8- and 640-

hour cases 

NegotiatingMonitoring

Monitoring

Tasks Completed

Initial

Discovering
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Tractability of minimal s-t cut set analysis

However, number of potential s-t cut sets in large directed graphs poses

barriers 

• Implemented minimal s-t cut set enumeration algorithm described in (Provan 
and Shier 1996)

– Complexity is O |E| for each s-t cut set that exists, where |E| is the number of edges in the 
graph. (Other algorithms surveyed were similar)

• Example: One Markov chain directed graph of order 40 contained > 4×108

minimal s-t cut sets even though related TPM was sparse (required > 193 
hours to compute).

 Minimal s-t cut set enumeration algorithms may not be computationally 
efficient for large Markov chain problems
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Using the node Contraction algorithm 

to find minimal s-t cut sets 

Finds minimal s-t cut  sets probabilistically  though not guaranteed to find all 
(Also, finds multiple transition s-t cut sets)

Tasks Completed

Waiting
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Initial 

State

Negotiating

Monitoring

t

s

• Because selection of vertices to contract is random, multiple repetitions 
produce different results, yielding collection of cut sets

• For single repetition, best algorithms find a minimal s-t cut set in O |V|2 in 
undirected graphs where |V| is the number of vertices (Karger and Stein, 1996). 

• Computational cost can be bounded by limiting number of repetitions
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s

t

......

Randomly choose 2 connected 

vertices to contract. 

Tasks CompletedWaiting

Discovering

Initial 

State

Negotiating

Monitoring

s

t

Overview of steps in single repetition. 
Psuedo code in (Dabrowski, Hunt, and Morrison, 2010 )              

Replace with new vertex that

assumes edges of both

contracted vertices

Halt when 2 “mega” vertices 

remain. Assumed edges between 

“mega” vertices are cut set.

Repeat steps. 
(Ensure s and t

are not in same

contracted vertex)

Negotiating

Monitoring

Minimal 

s-t cut set
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Experimental results of applying node contraction

• Chose four large problems, for which minimal s-t cut sets could be computed 
by cut set enumeration algorithm of (Provan and Shier 1996) in reasonable time.

• Compared node contraction and cut set enumeration algorithm to see if 
node contraction could find the most critical cut sets.

• Criticality of minimal s-t cut sets determined by three ranking criteria (sorts 
A, B, C), based on idea that cut sets with fewest transitions were most 
critical  related to most likely failure scenarios.

Minimal s-t cut 
set 
enumeration

Proportion (in %) of 100 top-ranked minimal 
s-t cut sets ranked by criteria A, B that were 
found by the node contraction algorithm

Number 
of cut 
sets

Time
(in 
hours)

After 10,000 repetitions After 100,000 repetitions

Time Sort A Sort B Sort C Time Sort A Sort B Sort C

1 50 530,432 332 s 640 s 80 100 96 --- --- --- ---

2 50 28,230,288 21.6 171 s 93 98 65 1710 s 99 100 99

3 50 27,242,634 36.0  218 s 67 100 100 2288 s 88 100 100

4 40 422,060,801 193.6 106 s 30 80 62 1051 s 37 100 100

N
u

m
b

er

O
rd

er

Result: node contraction could find most critical cut sets, with exceptions, 

with further 2x reduction in computational cost
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Outline

1. DTMC concepts and model development

2. Perturbing a DTMC to identify a failure scenario

3. Using minimal s-t cut set analysis and node contraction 

to reduce search for failure scenarios

4. Conclusions
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Conclusions

• Approach to finding critical transitions & failure scenarios in DTMCs uses 
combination of techniques not previously reported

– Time inhomogeneous representation to capture change over time

– Markov simulation and quantitative performance analysis (thresholds)

– Minimal s-t cut set analysis

• Results show potential of minimal s-t cut set analysis to identify critical 
transitions and related failure scenarios at reduced computation cost 

– Generally 2x less than exhaustive perturbation of all combinations in TPM

 Indicates potential for predictive use

• For larger problems, node contraction algorithm shows potential to find critical 
transitions through reduced search, though needs further investigation

• Areas of further work

– Investigate other approaches to finding cut sets in large problems (ex. 
other node contraction algorithms (Karger and Stein, 1996), min-max flow 
algorithms, & eigensystem analysis (Hunt, Morrison, and Dabrowski, 2011)

– Investigate applicability to other domains. 
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