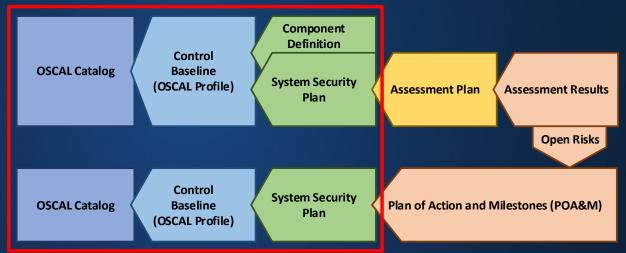

OSCAL Catalog, Profile, and Implementation Layers Catalog, Profile, Component Definition, and System Security Plan Models

What is OSCAL?



OSCAL is not a tool, but it enables tools to share data

OSCAL provides standardized data formats for exchanging control, control implementation, and control assessment information between tools

- > Catalog and baseline information can be easily imported into a tool
- Product and system control implementation information can be shared
- > Assessors can generate assessment results to share
- Assessment tools can produce data to import into other tools

The OSCAL Models

OSCAL provides 7 models:

- Offered in XML-, JSON-, and YAML-based formats
- Supports a control-based risk management approach to system security
- Each model build on the models to the left (in the diagram above)

The OSCAL models provide for:

- Improved accuracy and document quality
- Reduced labor costs
- Easy machine-to-machine exchange
- Leverageable, standardized identifiers providing the foundation for assessment automation

Common OSCAL Structure

Root Element: Indicates the model of the data

- Root UUID: A RFC 4122 Version 4 Universally Unique Identifier (UUID) that identifies the specific document instance. Changed when the document is modified.
- Metadata: Information about the document (i.e., title, last-modified timestamp, OSCAL version). Also used to define roles, parties (people, teams and organizations), and locations referenced in the document.
- > Model-specific Body: The body is specific to each model.
- Back Matter: Used to link to and attach resources, which may contain citations. Used to associate graphics, supporting documentation, etc. with the OSCAL document. A reference entry here can be referenced from within the body of an OSCAL document.

Every OSCAL File

Root Element

[catalog|profile|component|
 system-security-plan|
 assessment-plan|
 assessment-results|
plan-of-actions-and-milestones

Universally Unique Identifier (UUID)

Metadata Must be at the start of every OSCAL file. Syntax is the same, regardless of root element.

- Title, Modified Date, OSCAL Syntax Version
- Document Date and Version
- Roles, People, Organizations, Locations

Body Syntax is different for each root element.

Back Matter

May be at the end of any OSCAL file. Syntax is the same, regardless of root element.

- External Links and Citations
- Attachments and Embedded Images

OSCAL Catalog Model

Represents a collection of security and privacy controls, which may be used as part of a risk management program.

- Metadata: Same for each OSCAL model
- Parameter: Provides a global policy variable used by one or more control
- Control: An individual control in the catalog.
 - May contain control-specific parameters, control requirement statements, control objectives, assessment methods, references
 - Controls can have child controls.
- Group: Related controls may be grouped. Parameters related to this group may be defined here.
- Back Matter: Same for each OSCAL model

Metadata Title, Version, Date, Document Labels, Revision History, Prepared By/For

Parameter Parameter Definitions (Global)

Control Parameter Definitions (by Control) Control Requirement Definitions Control Objectives Assessment Methods


> Group (Family) Grouping of Parameters Grouping of Controls

Back Matter Laws/Regulations, Standards/Guidance Citations and External Links Other Attachments

OSCAL Profile Model

Used to establish a baseline of controls to be implemented with a system.

- Metadata: Same for each OSCAL model
- Import: Identifies an OSCAL catalog or other profile to import controls from
 - A control must be imported to be included in a baseline.
 - All parameters and back-matter resources cited by an imported control are also imported.
- Merge: Provides directives used to organize controls and to resolve conflicts when the same control is imported multiple times
- Modify: Allows tailoring of imported controls, including their parameters, control requirement definitions, references, control objectives, and assessment actions.
- Back Matter: Same for each OSCAL model

Profile (Control Baseline)

Metadata Title, Version, Date, Document Labels, Revision History, Prepared By/For

Merge Conflict Directives Profile Resolution Grouping Directives

Modify Parameter Modifications Control Requirement Modifications Control Objective Modifications Assessment Method Modifications


Back Matter Laws/Regulations, Standards/Guidance Citations and External Links Other Attachments as Needed

OSCAL Profile Model - Inheritance

A profile can import controls from:

- A catalog or multiple catalogs
- Another profile or multiple profiles

This allows a baseline to be established by customizing another baseline.

OSCAL System Security Plan Model

Used to document how controls are implemented for an information system and each component part of an information system.

- Metadata: Same for each OSCAL model
- Import Profile: Identifies the applicable control baseline for the system as an OSCAL profile.
- System Characteristics: Represents attributes of the system, such as its name, description, models, and information processed.
- System Implementation: Represents relevant information about the system's deployment, including user roles, interconnections, services, and system inventory.
- Control Implementation: Describes how each control in the baseline is implemented within the system.
- Back Matter: Same for each OSCAL model

System Security Plan (SSP)

Metadata Title, Version, Date, Document Labels, Revision History, Prepared By/For Roles, People, Teams, Locations

Import Profile URI pointing to a Profile

System Characteristics

System ID, Name, Description Sensitivity/Impact Level System Information Service & Deployment Models Diagrams: Authorization Boundary, Network, Data Flow

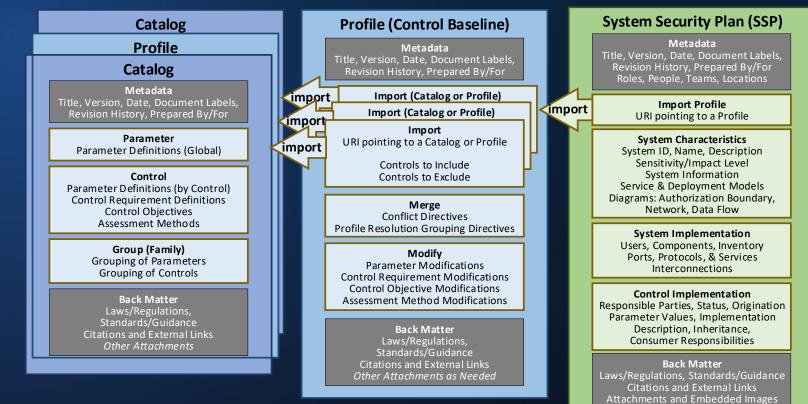
System Implementation

Users, Components, Inventory Ports, Protocols, & Services Interconnections

Control Implementation

Responsible Parties, Status, Origination Parameter Values, Implementation Description, Inheritance, Consumer Responsibilities

Back Matter


Laws/Regulations, Standards/Guidance Citations and External Links Attachments and Embedded Images

OSCAL System Security Plan Model -Inheritance

A system security plan has a single baseline for the system.

- The baseline is established by an OSCAL Profile
- The controls are inherited from the catalog(s) imported by the Profile and any Profile(s) it imports

This allows a baseline to be reused by multiple systems and for organizations to create custom baselines.

OSCAL System Security Plan Model -Inventory System Security Plan (SSP) Legacy Approach System Security Plan (SSP) Component Approach (Goal)

The assets that compose a system are defined by the "system implementation".

The system inventory can be compositional.

- Components are used to describe individual system parts
- Components are associated with individual inventory items

This allows the parts of a system to be individually identified.

System Security Plan (SSP) Legacy Approach	
<pre>Metadata role, party(person/org/team)</pre>	
Import Profile	
System Characteristics	
System Implementation	
Leveraged Authorization	
User	
Component [This System] *	
System Inventory	
Inventory Item Vendor, Product, Version Authenticated Scan, Scan Type(s) IP, MAC, Asset #	
Inventory Item	
Vendor, Product, Version Authenticated Scan, Scan Type(s) IP, MAC, Asset #	
Control Implementation	

Back Matter Attachments and Citations role, party(person/org/team)

ystem Characteristics

Metadata

System Implementation

Leveraged Authorization

Use

Component [This System]

Component (Linux OS) Vendor, Product, Version Authenticated Scan, Scan Type(s)

Component (Database)

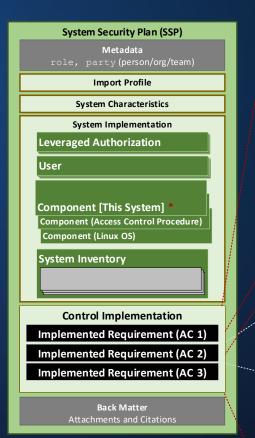
System Inventory

Inventory Item IP, MAC, Asset # Component Reference

Inventory Item IP, MAC, Asset # Component Reference

Control Implementation

Back Matter Attachments and Citations


OSCAL System Security Plan Model – Control Statements

Control statements are used to document a control's implementation in the system.

Statements can be made for:

- The entire system using "This System"
- > A specific component

This allows a fine-grained definition of the system implementation supporting greater automation and rigor.

Ir	Implemented Requirement (ac 1) nplementation Status (Annotation)	
С	ontrol Origination (Annotation)	
S	et Parameter	
S	tatement (ac-1_smt.a)	
	By Component (This System)	
	Control Satisfaction Description	
	Responsible Role(s)	
	Implementation Point	
	Customer Responsibility	
l	By Component (AC Procedure)	
S	tatement (ac-1_smt.b.1)	
S	tatement (ac-1_smt.b.2)	
		_
I	Implemented Requirement (ac 3) mplementation Status (Annotation)	
C	Control Origination (Annotation)	
S	et Parameter	
S	itatement (ac-3_smt)	
	By Component (This System)	
	Control Satisfaction Description	
	Responsible Role(s)	
	Implementation Point	
	Customer Responsibility	
	By Component (Linux OS)	

Implemented Requirement (ac 2) Implementation Status (Annotation) Control Origination (Annotation) Set Parameter Statement (ac-2_smt.a) By Component (This System) Control Satisfaction Description Responsible Role(s) Implementation Point Customer Responsibility By Component (Linux OS) Statement (ac-2_smt.b) Statement (ac-2_smt.c)

OSCAL Component Definition Model

Used to document how controls are implemented for a given software, hardware, service, policy, process, procedure, or validation (i.e. FIPS 140-2).

- Metadata: Same for each OSCAL model
- Import: Other component definitions from another resource, from which related information is referenced.
- Component: A defined component that can be part of an implemented system.
- > Capability: A grouping of multiple components or capabilities.
- Back Matter: Same for each OSCAL model

Component Definition

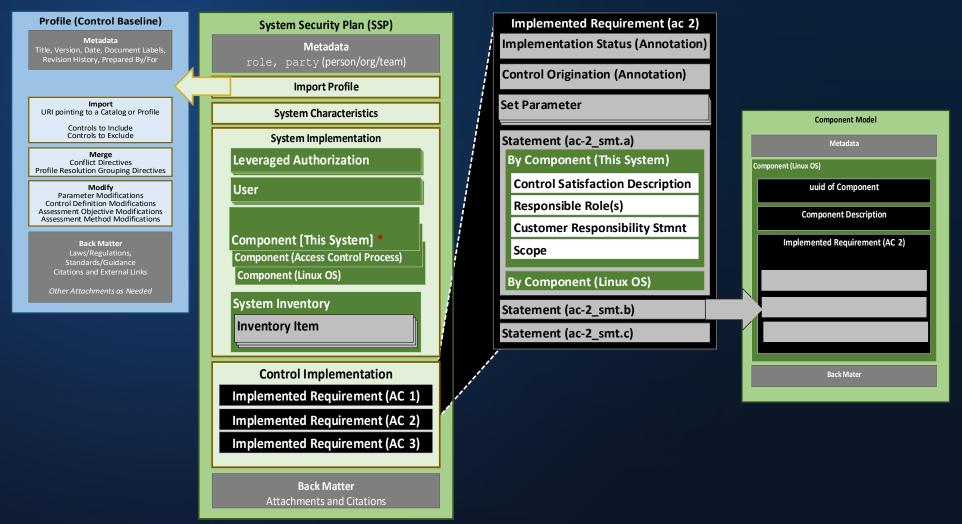
Metadata Title, Version, Date, Document Labels, Revision History, Prepared By

Import Component Definition URI pointing to other component definition files

Component

Individual component information, and information about controls the component is able to satisfy

Capability

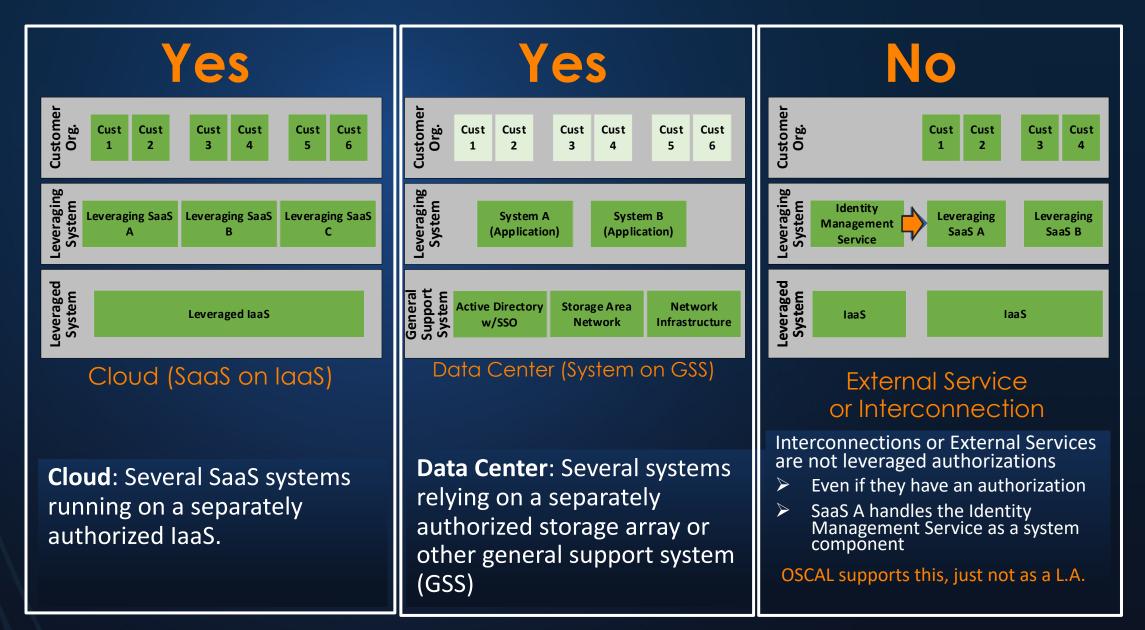

A grouping of related components into a larger capability

Back Matter Citations and External Links Attachments and Embedded Images

OSCAL Component Definition Model – Using with a System Security Plan

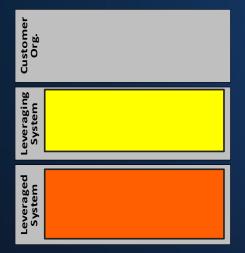
Components from a Component Definition can make documenting a system easier.

Implementation statements in the SSP can be populated from the Component Definition



* Every SSP, must have a component representing the whole system.

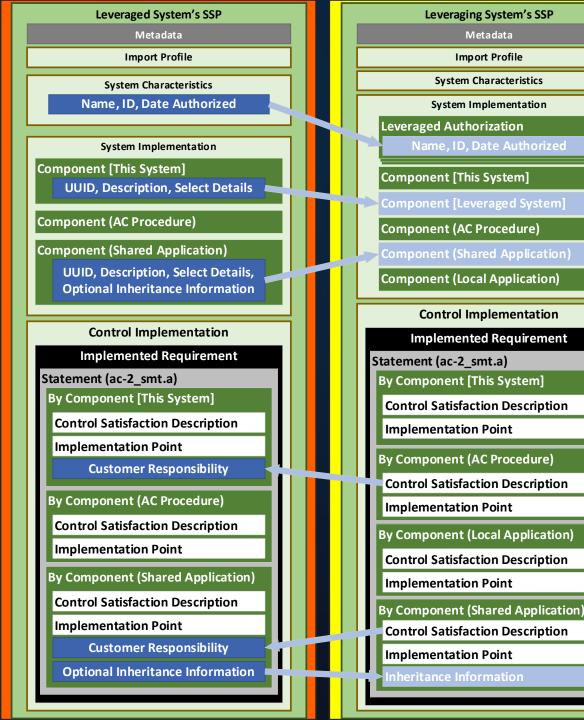
OSCAL Support for Leveraging Existing ATOs



Examples of a Leveraged Authorization?

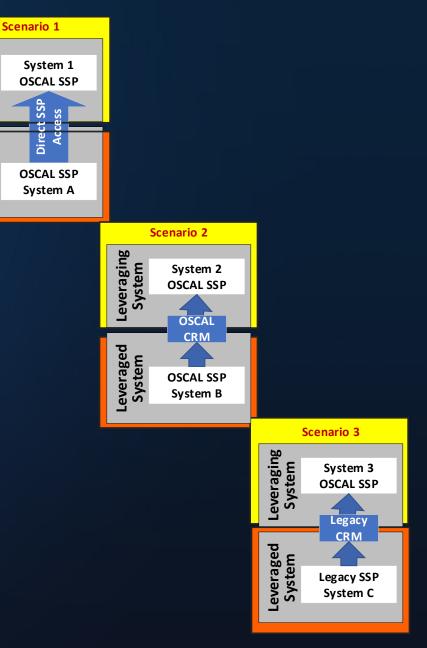
What is a Leveraged Authorization?

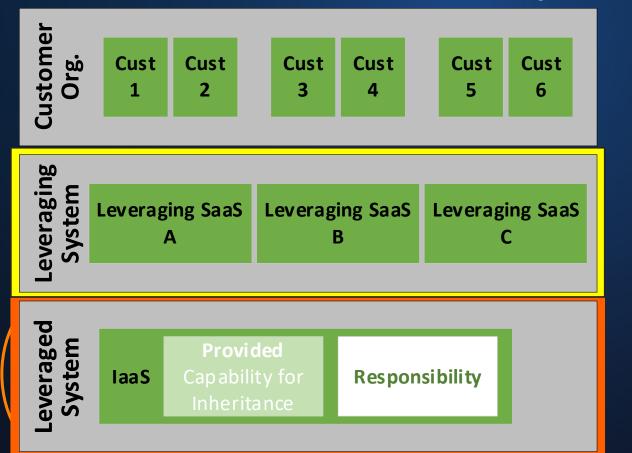
A leveraged authorization exists where:



Systems Operating in a Stacked Hierarchy

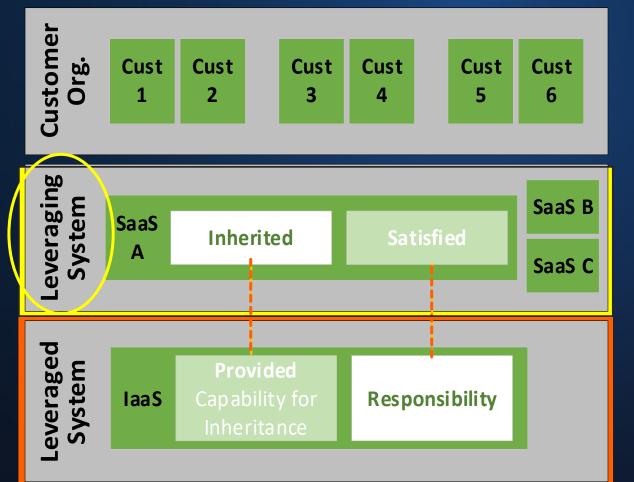
- one or more leveraging systems rely on a leveraged system for operation in a stacked hierarchy; and
- any leveraging system is authorized separately from the leveraged system.


External services and interconnections are not regarded as leveraged authorizations.


Leveraging ATOs - Three Scenarios

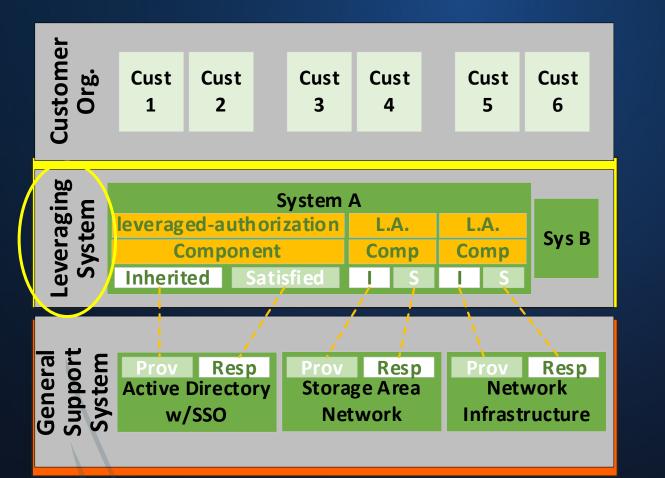
System

Leveraging System Scenario 1: OSCAL SSP / With Access The leveraged system is using an OSCAL SSP; and the leveraging system is permitted to access it. everaged No CRM/SSRM is needed. Completed Preferred approach! Scenario 2: OSCAL SSP / No Access The leveraged system is using an OSCAL SSP; however, the leveraging system is not permitted to access it. An OSCAL CRM/SSRM will be used. Typical FedRAMP Scenario Post 1.0 Release Candidate Scenario 3: Legacy SSP A leveraged system is still using a legacy SSP. A legacy Customer Responsibility Matrix (CRM) or System Security Responsibility Matrix (SSRM) are used/available. Transition scenario for an imperfect world Post 1.0 Release Candidate


Control Documentation (Leveraged System View)

Leveraged System:

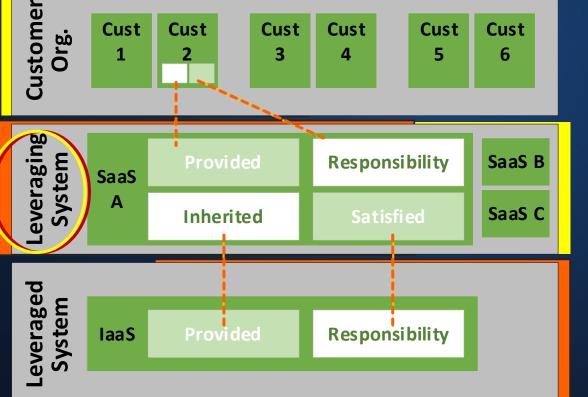
- > The leveraged system's SSP should:
 - identify what may be inherited by leveraging systems
 - including a consumerappropriate description of the control inheritance; and
 - Identify any responsibilities that must be addressed by the leveraging system to fully satisfy a control ...
 - ... including where:
 - The leveraging system must be configured for an inherited capability; or
 - There is a gap in control satisfaction which must be addressed by the leveraging system


Control Documentation (Leveraging System View)

Leveraging System:

- > The leveraging system's SSP should:
 - identify what is inherited from a leveraged system; and
 - identify any addressed responsibilities (as communicated by the leveraged system's SSP)
- These are linked from the leveraging system's SSP to the leveraged system's SSP using the UUID value associated with the "provided" and "responsibility" statements.
- Any components associated with these statements from the leveraged system's SSP must also be represented in the leveraging system's SSP.

Leveraging System with multiple Leveraged Systems


The same syntax is used

It is simply replicated for each leveraged system

> The Leveraging System's SSP:

- Has a separate "leveragedauthorization" assembly for each leveraged system.
- Has a separate "component" representing each leveraged system.
- Has a separate "component" representing the leveraged system components associated with inherited capabilities.

When a
Leveraging System
is also a
Leveraged SystemLeveraged SystemLeveraged SystemCustCust23456

Leveraging System

The leveraging system's SSP should:

- identify what is inherited from a leveraged system
- identify any addressed
 responsibilities (as identified by the leveraged system)
- \succ In addition to:
 - identifying what may be inherited by the leveraging system's customers
 - any responsibilities the leveraging system's customers must address to fully satisfy a control

Questions?

Have more questions?

Contact us directly at <u>oscal@nist.gov</u> Join the community conversation at https://gitter.im/usnistgov-OSCAL/Lobby

